Cargando…
Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes
IMPORTANCE: Accurate risk stratification of patients with heart failure (HF) is critical to deploy targeted interventions aimed at improving patients’ quality of life and outcomes. OBJECTIVES: To compare machine learning approaches with traditional logistic regression in predicting key outcomes in p...
Autores principales: | Desai, Rishi J., Wang, Shirley V., Vaduganathan, Muthiah, Evers, Thomas, Schneeweiss, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991258/ https://www.ncbi.nlm.nih.gov/pubmed/31922560 http://dx.doi.org/10.1001/jamanetworkopen.2019.18962 |
Ejemplares similares
-
Association of Prescription Co-payment With Adherence to Glucagon-Like Peptide-1 Receptor Agonist and Sodium-Glucose Cotransporter-2 Inhibitor Therapies in Patients With Heart Failure and Diabetes
por: Essien, Utibe R., et al.
Publicado: (2023) -
Acute Cardiovascular Complications of COVID-19: The High Risk of Underlying Heart Disease
por: Mensah, George A., et al.
Publicado: (2023) -
A rationale for dedicated trials of combination therapy in heart failure
por: Blumer, Vanessa, et al.
Publicado: (2022) -
Measuring prevalence and incidence of chronic conditions in claims and electronic health record databases
por: Rassen, Jeremy A, et al.
Publicado: (2018) -
Contemporary economic burden in a real‐world heart failure population with Commercial and Medicare supplemental plans
por: Lam, Carolyn S. P., et al.
Publicado: (2021)