Cargando…
Assessment of a Machine Learning Model Applied to Harmonized Electronic Health Record Data for the Prediction of Incident Atrial Fibrillation
IMPORTANCE: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, and its early detection could lead to significant improvements in outcomes through the appropriate prescription of anticoagulation medication. Although a variety of methods exist for screening for AF, a targeted ap...
Autores principales: | Tiwari, Premanand, Colborn, Kathryn L., Smith, Derek E., Xing, Fuyong, Ghosh, Debashis, Rosenberg, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991266/ https://www.ncbi.nlm.nih.gov/pubmed/31951272 http://dx.doi.org/10.1001/jamanetworkopen.2019.19396 |
Ejemplares similares
-
Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data
por: Mandair, Divneet, et al.
Publicado: (2020) -
Age at Diagnosis of Atrial Fibrillation and Incident Dementia
por: Zhang, Wenya, et al.
Publicado: (2023) -
Racial/Ethnic and Socioeconomic Disparities in Management of Incident Paroxysmal Atrial Fibrillation
por: Eberly, Lauren A., et al.
Publicado: (2021) -
Incidence of atrial fibrillation, ischaemic heart disease and heart failure in patients with diabetes
por: Groenewegen, Amy, et al.
Publicado: (2021) -
Kernel machine tests of association between brain networks and phenotypes
por: Jensen, Alexandria M., et al.
Publicado: (2019)