Cargando…
Implementation of machine learning into clinical breast MRI: Potential for objective and accurate decision-making in suspicious breast masses
We investigated whether the integration of machine learning (ML) into MRI interpretation can provide accurate decision rules for the management of suspicious breast masses. A total of 173 consecutive patients with suspicious breast masses upon complementary assessment (BI-RADS IV/V: n = 100/76) rece...
Autores principales: | Ellmann, Stephan, Wenkel, Evelyn, Dietzel, Matthias, Bielowski, Christian, Vesal, Sulaiman, Maier, Andreas, Hammon, Matthias, Janka, Rolf, Fasching, Peter A., Beckmann, Matthias W., Schulz Wendtland, Rüdiger, Uder, Michael, Bäuerle, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992224/ https://www.ncbi.nlm.nih.gov/pubmed/31999755 http://dx.doi.org/10.1371/journal.pone.0228446 |
Ejemplares similares
-
Automated volumetric radiomic analysis of breast cancer vascularization improves survival prediction in primary breast cancer
por: Dietzel, Matthias, et al.
Publicado: (2020) -
Breast MRI in the era of diffusion weighted imaging: do we still need signal-intensity time curves?
por: Dietzel, Matthias, et al.
Publicado: (2019) -
Fine needle aspiration cytology of lymph nodes in breast cancer follow-up is a feasible alternative to watchful waiting and to histology
por: Hammon, Matthias, et al.
Publicado: (2015) -
Low-Risk Women with Suspicious Microcalcifications in Mammography—Can an Additional Breast MRI Reduce the Biopsy Rate?
por: Pöschke, Patrik, et al.
Publicado: (2023) -
Computer-Aided Diagnosis in Multiparametric MRI of the Prostate: An Open-Access Online Tool for Lesion Classification with High Accuracy
por: Ellmann, Stephan, et al.
Publicado: (2020)