Cargando…
Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms
The atmosphere of Mars is strongly affected by the spatial and temporal variability of airborne dust. However, global dust variability within a sol (Martian day) is still poorly understood. Although short-term dynamic processes are crucial, detailed comparisons of simulated diurnal variations are li...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992627/ https://www.ncbi.nlm.nih.gov/pubmed/32001703 http://dx.doi.org/10.1038/s41467-020-14510-x |
Sumario: | The atmosphere of Mars is strongly affected by the spatial and temporal variability of airborne dust. However, global dust variability within a sol (Martian day) is still poorly understood. Although short-term dynamic processes are crucial, detailed comparisons of simulated diurnal variations are limited by relatively sparse observations. Here, we report the discovery of ubiquitous, strong diurnal tides of dust in the Southern Hemisphere of Mars. Driven by the westward-propagating migrating diurnal thermal tide, zonally distributed dust fronts slosh back and forth in a wide latitudinal range of up to 40° within one sol during major dust storms. Dust tides—tidal transport of dust in this way—rapidly transport heat and constituents meridionally, allowing moist air near the summer pole to be rapidly transported to lower latitudes during the night, where it then can be lifted by daytime deep convection and contribute to hydrogen escape from Mars during global dust storms. |
---|