Cargando…
Estimation of energy consumed by middle-aged recreational marathoners during a marathon using accelerometry-based devices
As long-distance races have substantially increased in popularity over the last few years, the improvement of training programs has become a matter of concern to runners, coaches and health professionals. Triaxial accelerometers have been proposed as a one of the most accurate tools to evaluate phys...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992743/ https://www.ncbi.nlm.nih.gov/pubmed/32001789 http://dx.doi.org/10.1038/s41598-020-58492-8 |
Sumario: | As long-distance races have substantially increased in popularity over the last few years, the improvement of training programs has become a matter of concern to runners, coaches and health professionals. Triaxial accelerometers have been proposed as a one of the most accurate tools to evaluate physical activity during free-living conditions. In this study, eighty-eight recreational marathon runners, aged 30–45 years, completed a marathon wearing a GENEActiv accelerometer on their non-dominant wrist. Energy consumed by each runner during the marathon was estimated based on both running speed and accelerometer output data, by applying the previously established GENEActiv cut-points for discriminating the six relative-intensity activity levels. Since accelerometry allowed to perform an individualized estimation of energy consumption, higher interpersonal differences in the number of calories consumed by a runner were observed after applying the accelerometry-based approach as compared to the speed-based method. Therefore, pacing analyses should include information of effort intensity distribution in order to adjust race pacing appropriately to achieve the marathon goal time. Several biomechanical and physiological parameters (maximum oxygen uptake, energy cost of running and running economy) were also inferred from accelerometer output data, which is of great value for coaches and doctors. |
---|