Cargando…
Thickness-induced metal to insulator transition in Ru nanosheets probed by photoemission spectroscopy: Effects of disorder and Coulomb interaction
We investigated the electronic structures of mono- and few-layered Ru nanosheets (N layers (L) with N = 1, ~6, and ~9) on Si substrate by ultra-violet and x-ray photoemission spectroscopies. The spectral density of states (DOS) near E(F) of ~6 L and 1 L is suppressed as it approaches E(F) in contras...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992751/ https://www.ncbi.nlm.nih.gov/pubmed/32001766 http://dx.doi.org/10.1038/s41598-020-58057-9 |
Sumario: | We investigated the electronic structures of mono- and few-layered Ru nanosheets (N layers (L) with N = 1, ~6, and ~9) on Si substrate by ultra-violet and x-ray photoemission spectroscopies. The spectral density of states (DOS) near E(F) of ~6 L and 1 L is suppressed as it approaches E(F) in contrast to that of ~9 L, which is consistent with the Ru 3 d core-level shift indicating the reduction of the metallic conductivity. A power law g(ε) ∝ |ε − ε(F)|(α) well reproduces the observed spectral DOS of ~6 L and 1 L. The evolution of the power factor α suggests that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L. |
---|