Cargando…
Scalable Prediction of Acute Myeloid Leukemia Using High-Dimensional Machine Learning and Blood Transcriptomics
Acute myeloid leukemia (AML) is a severe, mostly fatal hematopoietic malignancy. We were interested in whether transcriptomic-based machine learning could predict AML status without requiring expert input. Using 12,029 samples from 105 different studies, we present a large-scale study of machine lea...
Autores principales: | Warnat-Herresthal, Stefanie, Perrakis, Konstantinos, Taschler, Bernd, Becker, Matthias, Baßler, Kevin, Beyer, Marc, Günther, Patrick, Schulte-Schrepping, Jonas, Seep, Lea, Klee, Kathrin, Ulas, Thomas, Haferlach, Torsten, Mukherjee, Sach, Schultze, Joachim L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992905/ https://www.ncbi.nlm.nih.gov/pubmed/31918046 http://dx.doi.org/10.1016/j.isci.2019.100780 |
Ejemplares similares
-
Decoding mechanism of action and sensitivity to drug candidates from integrated transcriptome and chromatin state
por: Carraro, Caterina, et al.
Publicado: (2022) -
Transcriptional Signature Derived from Murine Tumor-Associated Macrophages Correlates with Poor Outcome in Breast Cancer Patients
por: Tuit, Sander, et al.
Publicado: (2019) -
Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes
por: Fujii, Wataru, et al.
Publicado: (2021) -
The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin
por: Schmidt, Susanne V, et al.
Publicado: (2016) -
Co-existence of intact stemness and priming of neural differentiation programs in mES cells lacking Trim71
por: Mitschka, Sibylle, et al.
Publicado: (2015)