Cargando…

Bioluminescence of Vibrio fischeri: bacteria respond quickly and sensitively to pulsed microwave electric (but not magnetic) fields

Biological systems with intrinsic luminescent properties serve as powerful and noninvasive bioreporters for real-time and label-free monitoring of cell physiology. This study employs the bioluminescent marine bacterium Vibrio fischeri to investigate the effects of separated microwave electric (E) an...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Catrin F., Geroni, Gilles M., Lloyd, David, Choi, Heungjae, Clark, Nicholas, Pirog, Antoine, Lees, Jonathan, Porch, Adrian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992959/
https://www.ncbi.nlm.nih.gov/pubmed/30816030
http://dx.doi.org/10.1117/1.JBO.24.5.051412
Descripción
Sumario:Biological systems with intrinsic luminescent properties serve as powerful and noninvasive bioreporters for real-time and label-free monitoring of cell physiology. This study employs the bioluminescent marine bacterium Vibrio fischeri to investigate the effects of separated microwave electric (E) and magnetic (H) fields. Using a cylindrical [Formula: see text] mode aluminum resonant cavity, designed to spatially separate E and H fields of a pulsed microwave (2.45 GHz) input, we sampled at 100-ms intervals the 490-nm emission of bioluminescence from suspensions of the V. fischeri. E-field exposure (at 4.24 and 13.4 kV/m) results in rapid and sensitive responses to 100-ms pulses. H-field excitation elicits no measurable responses, even at 100-fold higher power input levels (equivalent to 183 A/m). The observed effects on bacterial light output partially correlate with measured E-field-induced temperature increases. In conclusion, the endogenous bioluminescence of V. fischeri provides a sensitive and noninvasive method to assess the biological effects of microwave fields.