Cargando…
HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992995/ https://www.ncbi.nlm.nih.gov/pubmed/32021810 http://dx.doi.org/10.1016/j.mex.2019.07.001 |
Sumario: | We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity. • Identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop. |
---|