Cargando…

HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification

We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and in...

Descripción completa

Detalles Bibliográficos
Autores principales: Litvinenko, Alexander, Kriemann, Ronald, Genton, Marc G., Sun, Ying, Keyes, David E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992995/
https://www.ncbi.nlm.nih.gov/pubmed/32021810
http://dx.doi.org/10.1016/j.mex.2019.07.001
Descripción
Sumario:We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity. • Identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop.