Cargando…
HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992995/ https://www.ncbi.nlm.nih.gov/pubmed/32021810 http://dx.doi.org/10.1016/j.mex.2019.07.001 |
_version_ | 1783492944879157248 |
---|---|
author | Litvinenko, Alexander Kriemann, Ronald Genton, Marc G. Sun, Ying Keyes, David E. |
author_facet | Litvinenko, Alexander Kriemann, Ronald Genton, Marc G. Sun, Ying Keyes, David E. |
author_sort | Litvinenko, Alexander |
collection | PubMed |
description | We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity. • Identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop. |
format | Online Article Text |
id | pubmed-6992995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69929952020-02-04 HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification Litvinenko, Alexander Kriemann, Ronald Genton, Marc G. Sun, Ying Keyes, David E. MethodsX Mathematics We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity. • Identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop. Elsevier 2019-07-11 /pmc/articles/PMC6992995/ /pubmed/32021810 http://dx.doi.org/10.1016/j.mex.2019.07.001 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Mathematics Litvinenko, Alexander Kriemann, Ronald Genton, Marc G. Sun, Ying Keyes, David E. HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification |
title | HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification |
title_full | HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification |
title_fullStr | HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification |
title_full_unstemmed | HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification |
title_short | HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification |
title_sort | hlibcov: parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification |
topic | Mathematics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992995/ https://www.ncbi.nlm.nih.gov/pubmed/32021810 http://dx.doi.org/10.1016/j.mex.2019.07.001 |
work_keys_str_mv | AT litvinenkoalexander hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification AT kriemannronald hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification AT gentonmarcg hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification AT sunying hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification AT keyesdavide hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification |