Cargando…

HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification

We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and in...

Descripción completa

Detalles Bibliográficos
Autores principales: Litvinenko, Alexander, Kriemann, Ronald, Genton, Marc G., Sun, Ying, Keyes, David E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992995/
https://www.ncbi.nlm.nih.gov/pubmed/32021810
http://dx.doi.org/10.1016/j.mex.2019.07.001
_version_ 1783492944879157248
author Litvinenko, Alexander
Kriemann, Ronald
Genton, Marc G.
Sun, Ying
Keyes, David E.
author_facet Litvinenko, Alexander
Kriemann, Ronald
Genton, Marc G.
Sun, Ying
Keyes, David E.
author_sort Litvinenko, Alexander
collection PubMed
description We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity. • Identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop.
format Online
Article
Text
id pubmed-6992995
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69929952020-02-04 HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification Litvinenko, Alexander Kriemann, Ronald Genton, Marc G. Sun, Ying Keyes, David E. MethodsX Mathematics We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity. • Identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop. Elsevier 2019-07-11 /pmc/articles/PMC6992995/ /pubmed/32021810 http://dx.doi.org/10.1016/j.mex.2019.07.001 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Mathematics
Litvinenko, Alexander
Kriemann, Ronald
Genton, Marc G.
Sun, Ying
Keyes, David E.
HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
title HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
title_full HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
title_fullStr HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
title_full_unstemmed HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
title_short HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
title_sort hlibcov: parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
topic Mathematics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992995/
https://www.ncbi.nlm.nih.gov/pubmed/32021810
http://dx.doi.org/10.1016/j.mex.2019.07.001
work_keys_str_mv AT litvinenkoalexander hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification
AT kriemannronald hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification
AT gentonmarcg hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification
AT sunying hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification
AT keyesdavide hlibcovparallelhierarchicalmatrixapproximationoflargecovariancematricesandlikelihoodswithapplicationsinparameteridentification