Cargando…
HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification
We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: • Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. • Compute matrix-vector product, Cholesky factorization and in...
Autores principales: | Litvinenko, Alexander, Kriemann, Ronald, Genton, Marc G., Sun, Ying, Keyes, David E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992995/ https://www.ncbi.nlm.nih.gov/pubmed/32021810 http://dx.doi.org/10.1016/j.mex.2019.07.001 |
Ejemplares similares
-
Large covariance and autocovariance matrices
por: Bose, Arup, et al.
Publicado: (2018) -
Shrinkage estimation for mean and covariance matrices
por: Tsukuma, Hisayuki, et al.
Publicado: (2020) -
Performance of penalized maximum likelihood in estimation of genetic covariances matrices
por: Meyer, Karin
Publicado: (2011) -
Hierarchical matrices algorithms and analysis
por: Hackbusch, Wolfgang
Publicado: (2015) -
Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
por: Meyer, Karin, et al.
Publicado: (2005)