Cargando…
Customization scenarios for de-identification of clinical notes
BACKGROUND: Automated machine-learning systems are able to de-identify electronic medical records, including free-text clinical notes. Use of such systems would greatly boost the amount of data available to researchers, yet their deployment has been limited due to uncertainty about their performance...
Autores principales: | Hartman, Tzvika, Howell, Michael D., Dean, Jeff, Hoory, Shlomo, Slyper, Ronit, Laish, Itay, Gilon, Oren, Vainstein, Danny, Corrado, Greg, Chou, Katherine, Po, Ming Jack, Williams, Jutta, Ellis, Scott, Bee, Gavin, Hassidim, Avinatan, Amira, Rony, Beryozkin, Genady, Szpektor, Idan, Matias, Yossi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993314/ https://www.ncbi.nlm.nih.gov/pubmed/32000770 http://dx.doi.org/10.1186/s12911-020-1026-2 |
Ejemplares similares
-
Caravan - A global community dataset for large-sample hydrology
por: Kratzert, Frederik, et al.
Publicado: (2023) -
Assigning Israeli medical graduates to internships
por: Bronfman, Slava, et al.
Publicado: (2015) -
A neural encoder for earthquake rate forecasting
por: Zlydenko, Oleg, et al.
Publicado: (2023) -
Prevalence of Sharing Access Credentials in Electronic Medical Records
por: Hassidim, Ayal, et al.
Publicado: (2017) -
The Complex Interplay between Nevi and Melanoma: Risk Factors and Precursors
por: Shreberk-Hassidim, Rony, et al.
Publicado: (2023)