Cargando…
Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmentation by Leveraging Location Information
The manual brain tumor annotation process is time consuming and resource consuming, therefore, an automated and accurate brain tumor segmentation tool is greatly in demand. In this paper, we introduce a novel method to integrate location information with the state-of-the-art patch-based neural netwo...
Autores principales: | Kao, Po-Yu, Shailja, Shailja, Jiang, Jiaxiang, Zhang, Angela, Khan, Amil, Chen, Jefferson W., Manjunath, B. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993565/ https://www.ncbi.nlm.nih.gov/pubmed/32038146 http://dx.doi.org/10.3389/fnins.2019.01449 |
Ejemplares similares
-
Corrigendum: Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmentation by Leveraging Location Information
por: Kao, Po-Yu, et al.
Publicado: (2020) -
Segmentation, tracking, and sub-cellular feature extraction in 3D time-lapse images
por: Jiang, Jiaxiang, et al.
Publicado: (2023) -
Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities
por: Ghafoorian, Mohsen, et al.
Publicado: (2017) -
Automated Segmentation and Connectivity Analysis for Normal Pressure Hydrocephalus
por: Zhang, Angela, et al.
Publicado: (2022) -
Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network
por: Kim, Hojin, et al.
Publicado: (2020)