Cargando…
A CNN-RNN Framework for Crop Yield Prediction
Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks...
Autores principales: | Khaki, Saeed, Wang, Lizhi, Archontoulis, Sotirios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993602/ https://www.ncbi.nlm.nih.gov/pubmed/32038699 http://dx.doi.org/10.3389/fpls.2019.01750 |
Ejemplares similares
-
Corn Yield Prediction With Ensemble CNN-DNN
por: Shahhosseini, Mohsen, et al.
Publicado: (2021) -
Crop Yield Prediction Using Deep Neural Networks
por: Khaki, Saeed, et al.
Publicado: (2019) -
County-scale crop yield prediction by integrating crop simulation with machine learning models
por: Sajid, Saiara Samira, et al.
Publicado: (2022) -
An interaction regression model for crop yield prediction
por: Ansarifar, Javad, et al.
Publicado: (2021) -
Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation
por: Puntel, Laila A., et al.
Publicado: (2016)