Cargando…

Along the Indian Ocean Coast: Genomic Variation in Mozambique Provides New Insights into the Bantu Expansion

The Bantu expansion, which started in West Central Africa around 5,000 BP, constitutes a major migratory movement involving the joint spread of peoples and languages across sub-Saharan Africa. Despite the rich linguistic and archaeological evidence available, the genetic relationships between differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Semo, Armando, Gayà-Vidal, Magdalena, Fortes-Lima, Cesar, Alard, Bérénice, Oliveira, Sandra, Almeida, João, Prista, António, Damasceno, Albertino, Fehn, Anne-Maria, Schlebusch, Carina, Rocha, Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993857/
https://www.ncbi.nlm.nih.gov/pubmed/31593238
http://dx.doi.org/10.1093/molbev/msz224
Descripción
Sumario:The Bantu expansion, which started in West Central Africa around 5,000 BP, constitutes a major migratory movement involving the joint spread of peoples and languages across sub-Saharan Africa. Despite the rich linguistic and archaeological evidence available, the genetic relationships between different Bantu-speaking populations and the migratory routes they followed during various phases of the expansion remain poorly understood. Here, we analyze the genetic profiles of southwestern and southeastern Bantu-speaking peoples located at the edges of the Bantu expansion by generating genome-wide data for 200 individuals from 12 Mozambican and 3 Angolan populations using ∼1.9 million autosomal single nucleotide polymorphisms. Incorporating a wide range of available genetic data, our analyses confirm previous results favoring a “late split” between West and East Bantu speakers, following a joint passage through the rainforest. In addition, we find that Bantu speakers from eastern Africa display genetic substructure, with Mozambican populations forming a gradient of relatedness along a North–South cline stretching from the coastal border between Kenya and Tanzania to South Africa. This gradient is further associated with a southward increase in genetic homogeneity, and involved minimum admixture with resident populations. Together, our results provide the first genetic evidence in support of a rapid North–South dispersal of Bantu peoples along the Indian Ocean Coast, as inferred from the distribution and antiquity of Early Iron Age assemblages associated with the Kwale archaeological tradition.