Cargando…
Learning unsupervised contextual representations for medical synonym discovery
OBJECTIVES: An important component of processing medical texts is the identification of synonymous words or phrases. Synonyms can inform learned representations of patients or improve linking mentioned concepts to medical ontologies. However, medical synonyms can be lexically similar (“dilated RA” a...
Autores principales: | Schumacher, Elliot, Dredze, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994012/ https://www.ncbi.nlm.nih.gov/pubmed/32025651 http://dx.doi.org/10.1093/jamiaopen/ooz057 |
Ejemplares similares
-
Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia
por: Coombes, Caitlin E, et al.
Publicado: (2020) -
Unsupervised cross-lingual model transfer for named entity recognition with contextualized word representations
por: Yan, Huijiong, et al.
Publicado: (2021) -
Unsupervised Representation Learning for Proteochemometric Modeling
por: Kim, Paul T., et al.
Publicado: (2021) -
Learning deep representations of enzyme thermal adaptation
por: Li, Gang, et al.
Publicado: (2022) -
Medical Image Segmentation with Learning Semantic and Global Contextual Representation
por: Alahmadi, Mohammad D.
Publicado: (2022)