Cargando…

Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime

[Image: see text] The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Han, Gordeev, Georgy, Garrity, Oisin, Peyyety, Naga Anirudh, Selvasundaram, Pranauv Balaji, Dehm, Simone, Krupke, Ralph, Cambré, Sofie, Wenseleers, Wim, Reich, Stephanie, Zheng, Ming, Fagan, Jeffrey A., Flavel, Benjamin S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994058/
https://www.ncbi.nlm.nih.gov/pubmed/31742998
http://dx.doi.org/10.1021/acsnano.9b08244
_version_ 1783493145885933568
author Li, Han
Gordeev, Georgy
Garrity, Oisin
Peyyety, Naga Anirudh
Selvasundaram, Pranauv Balaji
Dehm, Simone
Krupke, Ralph
Cambré, Sofie
Wenseleers, Wim
Reich, Stephanie
Zheng, Ming
Fagan, Jeffrey A.
Flavel, Benjamin S.
author_facet Li, Han
Gordeev, Georgy
Garrity, Oisin
Peyyety, Naga Anirudh
Selvasundaram, Pranauv Balaji
Dehm, Simone
Krupke, Ralph
Cambré, Sofie
Wenseleers, Wim
Reich, Stephanie
Zheng, Ming
Fagan, Jeffrey A.
Flavel, Benjamin S.
author_sort Li, Han
collection PubMed
description [Image: see text] The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
format Online
Article
Text
id pubmed-6994058
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-69940582020-02-03 Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime Li, Han Gordeev, Georgy Garrity, Oisin Peyyety, Naga Anirudh Selvasundaram, Pranauv Balaji Dehm, Simone Krupke, Ralph Cambré, Sofie Wenseleers, Wim Reich, Stephanie Zheng, Ming Fagan, Jeffrey A. Flavel, Benjamin S. ACS Nano [Image: see text] The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors. American Chemical Society 2019-11-19 2020-01-28 /pmc/articles/PMC6994058/ /pubmed/31742998 http://dx.doi.org/10.1021/acsnano.9b08244 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Li, Han
Gordeev, Georgy
Garrity, Oisin
Peyyety, Naga Anirudh
Selvasundaram, Pranauv Balaji
Dehm, Simone
Krupke, Ralph
Cambré, Sofie
Wenseleers, Wim
Reich, Stephanie
Zheng, Ming
Fagan, Jeffrey A.
Flavel, Benjamin S.
Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
title Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
title_full Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
title_fullStr Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
title_full_unstemmed Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
title_short Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
title_sort separation of specific single-enantiomer single-wall carbon nanotubes in the large-diameter regime
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994058/
https://www.ncbi.nlm.nih.gov/pubmed/31742998
http://dx.doi.org/10.1021/acsnano.9b08244
work_keys_str_mv AT lihan separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT gordeevgeorgy separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT garrityoisin separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT peyyetynagaanirudh separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT selvasundarampranauvbalaji separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT dehmsimone separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT krupkeralph separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT cambresofie separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT wenseleerswim separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT reichstephanie separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT zhengming separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT faganjeffreya separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime
AT flavelbenjamins separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime