Cargando…
Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
[Image: see text] The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube spec...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994058/ https://www.ncbi.nlm.nih.gov/pubmed/31742998 http://dx.doi.org/10.1021/acsnano.9b08244 |
_version_ | 1783493145885933568 |
---|---|
author | Li, Han Gordeev, Georgy Garrity, Oisin Peyyety, Naga Anirudh Selvasundaram, Pranauv Balaji Dehm, Simone Krupke, Ralph Cambré, Sofie Wenseleers, Wim Reich, Stephanie Zheng, Ming Fagan, Jeffrey A. Flavel, Benjamin S. |
author_facet | Li, Han Gordeev, Georgy Garrity, Oisin Peyyety, Naga Anirudh Selvasundaram, Pranauv Balaji Dehm, Simone Krupke, Ralph Cambré, Sofie Wenseleers, Wim Reich, Stephanie Zheng, Ming Fagan, Jeffrey A. Flavel, Benjamin S. |
author_sort | Li, Han |
collection | PubMed |
description | [Image: see text] The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors. |
format | Online Article Text |
id | pubmed-6994058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69940582020-02-03 Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime Li, Han Gordeev, Georgy Garrity, Oisin Peyyety, Naga Anirudh Selvasundaram, Pranauv Balaji Dehm, Simone Krupke, Ralph Cambré, Sofie Wenseleers, Wim Reich, Stephanie Zheng, Ming Fagan, Jeffrey A. Flavel, Benjamin S. ACS Nano [Image: see text] The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors. American Chemical Society 2019-11-19 2020-01-28 /pmc/articles/PMC6994058/ /pubmed/31742998 http://dx.doi.org/10.1021/acsnano.9b08244 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Li, Han Gordeev, Georgy Garrity, Oisin Peyyety, Naga Anirudh Selvasundaram, Pranauv Balaji Dehm, Simone Krupke, Ralph Cambré, Sofie Wenseleers, Wim Reich, Stephanie Zheng, Ming Fagan, Jeffrey A. Flavel, Benjamin S. Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime |
title | Separation of Specific
Single-Enantiomer Single-Wall
Carbon Nanotubes in the Large-Diameter Regime |
title_full | Separation of Specific
Single-Enantiomer Single-Wall
Carbon Nanotubes in the Large-Diameter Regime |
title_fullStr | Separation of Specific
Single-Enantiomer Single-Wall
Carbon Nanotubes in the Large-Diameter Regime |
title_full_unstemmed | Separation of Specific
Single-Enantiomer Single-Wall
Carbon Nanotubes in the Large-Diameter Regime |
title_short | Separation of Specific
Single-Enantiomer Single-Wall
Carbon Nanotubes in the Large-Diameter Regime |
title_sort | separation of specific
single-enantiomer single-wall
carbon nanotubes in the large-diameter regime |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994058/ https://www.ncbi.nlm.nih.gov/pubmed/31742998 http://dx.doi.org/10.1021/acsnano.9b08244 |
work_keys_str_mv | AT lihan separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT gordeevgeorgy separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT garrityoisin separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT peyyetynagaanirudh separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT selvasundarampranauvbalaji separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT dehmsimone separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT krupkeralph separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT cambresofie separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT wenseleerswim separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT reichstephanie separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT zhengming separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT faganjeffreya separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime AT flavelbenjamins separationofspecificsingleenantiomersinglewallcarbonnanotubesinthelargediameterregime |