Cargando…
GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)
[Image: see text] We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994066/ https://www.ncbi.nlm.nih.gov/pubmed/32025532 http://dx.doi.org/10.1021/acsphotonics.9b01243 |
_version_ | 1783493147512274944 |
---|---|
author | Lettner, Thomas Zeuner, Katharina D. Schöll, Eva Huang, Huiying Scharmer, Selim da Silva, Saimon Filipe Covre Gyger, Samuel Schweickert, Lucas Rastelli, Armando Jöns, Klaus D. Zwiller, Val |
author_facet | Lettner, Thomas Zeuner, Katharina D. Schöll, Eva Huang, Huiying Scharmer, Selim da Silva, Saimon Filipe Covre Gyger, Samuel Schweickert, Lucas Rastelli, Armando Jöns, Klaus D. Zwiller, Val |
author_sort | Lettner, Thomas |
collection | PubMed |
description | [Image: see text] We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm. The fabricated structures yield a predicted (measured) collection efficiency of 63% (12%), an improvement by more than 1 order of magnitude compared to unprocessed samples. We then integrate our quantum dot parabolic microcavities onto a piezoelectric substrate capable of inducing a large in-plane biaxial strain. With this approach, we tune the emission wavelength by 0.5 nm/kV, in a dynamic, reversible, and linear way, to the rubidium D(1) line (795 nm). |
format | Online Article Text |
id | pubmed-6994066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69940662020-02-03 GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1) Lettner, Thomas Zeuner, Katharina D. Schöll, Eva Huang, Huiying Scharmer, Selim da Silva, Saimon Filipe Covre Gyger, Samuel Schweickert, Lucas Rastelli, Armando Jöns, Klaus D. Zwiller, Val ACS Photonics [Image: see text] We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm. The fabricated structures yield a predicted (measured) collection efficiency of 63% (12%), an improvement by more than 1 order of magnitude compared to unprocessed samples. We then integrate our quantum dot parabolic microcavities onto a piezoelectric substrate capable of inducing a large in-plane biaxial strain. With this approach, we tune the emission wavelength by 0.5 nm/kV, in a dynamic, reversible, and linear way, to the rubidium D(1) line (795 nm). American Chemical Society 2019-12-19 2020-01-15 /pmc/articles/PMC6994066/ /pubmed/32025532 http://dx.doi.org/10.1021/acsphotonics.9b01243 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Lettner, Thomas Zeuner, Katharina D. Schöll, Eva Huang, Huiying Scharmer, Selim da Silva, Saimon Filipe Covre Gyger, Samuel Schweickert, Lucas Rastelli, Armando Jöns, Klaus D. Zwiller, Val GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1) |
title | GaAs Quantum
Dot in a Parabolic Microcavity Tuned
to (87)Rb D(1) |
title_full | GaAs Quantum
Dot in a Parabolic Microcavity Tuned
to (87)Rb D(1) |
title_fullStr | GaAs Quantum
Dot in a Parabolic Microcavity Tuned
to (87)Rb D(1) |
title_full_unstemmed | GaAs Quantum
Dot in a Parabolic Microcavity Tuned
to (87)Rb D(1) |
title_short | GaAs Quantum
Dot in a Parabolic Microcavity Tuned
to (87)Rb D(1) |
title_sort | gaas quantum
dot in a parabolic microcavity tuned
to (87)rb d(1) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994066/ https://www.ncbi.nlm.nih.gov/pubmed/32025532 http://dx.doi.org/10.1021/acsphotonics.9b01243 |
work_keys_str_mv | AT lettnerthomas gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT zeunerkatharinad gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT scholleva gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT huanghuiying gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT scharmerselim gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT dasilvasaimonfilipecovre gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT gygersamuel gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT schweickertlucas gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT rastelliarmando gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT jonsklausd gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 AT zwillerval gaasquantumdotinaparabolicmicrocavitytunedto87rbd1 |