Cargando…

GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)

[Image: see text] We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively...

Descripción completa

Detalles Bibliográficos
Autores principales: Lettner, Thomas, Zeuner, Katharina D., Schöll, Eva, Huang, Huiying, Scharmer, Selim, da Silva, Saimon Filipe Covre, Gyger, Samuel, Schweickert, Lucas, Rastelli, Armando, Jöns, Klaus D., Zwiller, Val
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994066/
https://www.ncbi.nlm.nih.gov/pubmed/32025532
http://dx.doi.org/10.1021/acsphotonics.9b01243
_version_ 1783493147512274944
author Lettner, Thomas
Zeuner, Katharina D.
Schöll, Eva
Huang, Huiying
Scharmer, Selim
da Silva, Saimon Filipe Covre
Gyger, Samuel
Schweickert, Lucas
Rastelli, Armando
Jöns, Klaus D.
Zwiller, Val
author_facet Lettner, Thomas
Zeuner, Katharina D.
Schöll, Eva
Huang, Huiying
Scharmer, Selim
da Silva, Saimon Filipe Covre
Gyger, Samuel
Schweickert, Lucas
Rastelli, Armando
Jöns, Klaus D.
Zwiller, Val
author_sort Lettner, Thomas
collection PubMed
description [Image: see text] We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm. The fabricated structures yield a predicted (measured) collection efficiency of 63% (12%), an improvement by more than 1 order of magnitude compared to unprocessed samples. We then integrate our quantum dot parabolic microcavities onto a piezoelectric substrate capable of inducing a large in-plane biaxial strain. With this approach, we tune the emission wavelength by 0.5 nm/kV, in a dynamic, reversible, and linear way, to the rubidium D(1) line (795 nm).
format Online
Article
Text
id pubmed-6994066
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-69940662020-02-03 GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1) Lettner, Thomas Zeuner, Katharina D. Schöll, Eva Huang, Huiying Scharmer, Selim da Silva, Saimon Filipe Covre Gyger, Samuel Schweickert, Lucas Rastelli, Armando Jöns, Klaus D. Zwiller, Val ACS Photonics [Image: see text] We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm. The fabricated structures yield a predicted (measured) collection efficiency of 63% (12%), an improvement by more than 1 order of magnitude compared to unprocessed samples. We then integrate our quantum dot parabolic microcavities onto a piezoelectric substrate capable of inducing a large in-plane biaxial strain. With this approach, we tune the emission wavelength by 0.5 nm/kV, in a dynamic, reversible, and linear way, to the rubidium D(1) line (795 nm). American Chemical Society 2019-12-19 2020-01-15 /pmc/articles/PMC6994066/ /pubmed/32025532 http://dx.doi.org/10.1021/acsphotonics.9b01243 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Lettner, Thomas
Zeuner, Katharina D.
Schöll, Eva
Huang, Huiying
Scharmer, Selim
da Silva, Saimon Filipe Covre
Gyger, Samuel
Schweickert, Lucas
Rastelli, Armando
Jöns, Klaus D.
Zwiller, Val
GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)
title GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)
title_full GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)
title_fullStr GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)
title_full_unstemmed GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)
title_short GaAs Quantum Dot in a Parabolic Microcavity Tuned to (87)Rb D(1)
title_sort gaas quantum dot in a parabolic microcavity tuned to (87)rb d(1)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994066/
https://www.ncbi.nlm.nih.gov/pubmed/32025532
http://dx.doi.org/10.1021/acsphotonics.9b01243
work_keys_str_mv AT lettnerthomas gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT zeunerkatharinad gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT scholleva gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT huanghuiying gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT scharmerselim gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT dasilvasaimonfilipecovre gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT gygersamuel gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT schweickertlucas gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT rastelliarmando gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT jonsklausd gaasquantumdotinaparabolicmicrocavitytunedto87rbd1
AT zwillerval gaasquantumdotinaparabolicmicrocavitytunedto87rbd1