Cargando…
Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines
Many biological organisms can tune their mechanical properties to adapt to environments in multistable modes, but the current synthetic materials, with bistable states, have a limited ability to alter mechanical stiffness. Here, we constructed programmable organohydrogels with multistable mechanical...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994219/ https://www.ncbi.nlm.nih.gov/pubmed/32064332 http://dx.doi.org/10.1126/sciadv.aax1464 |
Sumario: | Many biological organisms can tune their mechanical properties to adapt to environments in multistable modes, but the current synthetic materials, with bistable states, have a limited ability to alter mechanical stiffness. Here, we constructed programmable organohydrogels with multistable mechanical states by an on-demand modular assembly of noneutectic phase transition components inside microrganogel inclusions. The resultant multiphase organohydrogel exhibits precisely controllable thermo-induced stepwise switching (i.e., triple, quadruple, and quintuple switching) mechanics and a self-healing property. The organohydrogel was introduced into the design of soft-matter machines, yielding a soft gripper with adaptive grasping through stiffness matching with various objects under pneumatic-thermal hybrid actuation. Meanwhile, a programmable adhesion of octopus-inspired robotic tentacles on a wide range of surface morphologies was realized. These results demonstrated the applicability of these organohydrogels in lifelike soft robotics in unconstructed and human body environments. |
---|