Cargando…

The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice

Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yu, Chen, Changwan, Chen, Ming, Qian, Kai, Lv, Xinyou, Wang, Haiting, Jiang, Lifei, Yu, Lina, Zhuo, Min, Qiu, Shuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994462/
https://www.ncbi.nlm.nih.gov/pubmed/32005806
http://dx.doi.org/10.1038/s41467-020-14281-5
_version_ 1783493195026399232
author Wu, Yu
Chen, Changwan
Chen, Ming
Qian, Kai
Lv, Xinyou
Wang, Haiting
Jiang, Lifei
Yu, Lina
Zhuo, Min
Qiu, Shuang
author_facet Wu, Yu
Chen, Changwan
Chen, Ming
Qian, Kai
Lv, Xinyou
Wang, Haiting
Jiang, Lifei
Yu, Lina
Zhuo, Min
Qiu, Shuang
author_sort Wu, Yu
collection PubMed
description Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional awareness and consequently guides behavioral responses. Here, we demonstrate that the right-side aIC CamKII(+) (aIC(CamKII)) neurons in mice are activated by aversive visceral signals. Hyperactivation of the right-side aIC(CamKII) neurons attenuates food consumption, while inhibition of these neurons increases feeding and reverses aversive stimuli-induced anorexia and weight loss. Similar manipulation at the left-side aIC does not cause significant behavioral changes. Furthermore, virus tracing reveals that aIC(CamKII) neurons project directly to the vGluT2(+) neurons in the lateral hypothalamus (LH), and the right-side aIC(CamKII)-to-LH pathway mediates feeding suppression. Our studies uncover a circuit from the cortex to the hypothalamus that senses aversive visceral signals and controls feeding behavior.
format Online
Article
Text
id pubmed-6994462
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69944622020-02-03 The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice Wu, Yu Chen, Changwan Chen, Ming Qian, Kai Lv, Xinyou Wang, Haiting Jiang, Lifei Yu, Lina Zhuo, Min Qiu, Shuang Nat Commun Article Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional awareness and consequently guides behavioral responses. Here, we demonstrate that the right-side aIC CamKII(+) (aIC(CamKII)) neurons in mice are activated by aversive visceral signals. Hyperactivation of the right-side aIC(CamKII) neurons attenuates food consumption, while inhibition of these neurons increases feeding and reverses aversive stimuli-induced anorexia and weight loss. Similar manipulation at the left-side aIC does not cause significant behavioral changes. Furthermore, virus tracing reveals that aIC(CamKII) neurons project directly to the vGluT2(+) neurons in the lateral hypothalamus (LH), and the right-side aIC(CamKII)-to-LH pathway mediates feeding suppression. Our studies uncover a circuit from the cortex to the hypothalamus that senses aversive visceral signals and controls feeding behavior. Nature Publishing Group UK 2020-01-31 /pmc/articles/PMC6994462/ /pubmed/32005806 http://dx.doi.org/10.1038/s41467-020-14281-5 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wu, Yu
Chen, Changwan
Chen, Ming
Qian, Kai
Lv, Xinyou
Wang, Haiting
Jiang, Lifei
Yu, Lina
Zhuo, Min
Qiu, Shuang
The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice
title The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice
title_full The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice
title_fullStr The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice
title_full_unstemmed The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice
title_short The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice
title_sort anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994462/
https://www.ncbi.nlm.nih.gov/pubmed/32005806
http://dx.doi.org/10.1038/s41467-020-14281-5
work_keys_str_mv AT wuyu theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT chenchangwan theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT chenming theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT qiankai theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT lvxinyou theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT wanghaiting theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT jianglifei theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT yulina theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT zhuomin theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT qiushuang theanteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT wuyu anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT chenchangwan anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT chenming anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT qiankai anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT lvxinyou anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT wanghaiting anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT jianglifei anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT yulina anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT zhuomin anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice
AT qiushuang anteriorinsularcortexunilaterallycontrolsfeedinginresponsetoaversivevisceralstimuliinmice