Cargando…

Quasiparticle tunnel electroresistance in superconducting junctions

The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rouco, V., Hage, R. El, Sander, A., Grandal, J., Seurre, K., Palermo, X., Briatico, J., Collin, S., Trastoy, J., Bouzehouane, K., Buzdin, A. I., Singh, G., Bergeal, N., Feuillet-Palma, C., Lesueur, J., Leon, C., Varela, M., Santamaría, J., Villegas, Javier E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994500/
https://www.ncbi.nlm.nih.gov/pubmed/32005810
http://dx.doi.org/10.1038/s41467-020-14379-w
_version_ 1783493204004306944
author Rouco, V.
Hage, R. El
Sander, A.
Grandal, J.
Seurre, K.
Palermo, X.
Briatico, J.
Collin, S.
Trastoy, J.
Bouzehouane, K.
Buzdin, A. I.
Singh, G.
Bergeal, N.
Feuillet-Palma, C.
Lesueur, J.
Leon, C.
Varela, M.
Santamaría, J.
Villegas, Javier E.
author_facet Rouco, V.
Hage, R. El
Sander, A.
Grandal, J.
Seurre, K.
Palermo, X.
Briatico, J.
Collin, S.
Trastoy, J.
Bouzehouane, K.
Buzdin, A. I.
Singh, G.
Bergeal, N.
Feuillet-Palma, C.
Lesueur, J.
Leon, C.
Varela, M.
Santamaría, J.
Villegas, Javier E.
author_sort Rouco, V.
collection PubMed
description The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate that effects functionally indistinguishable from the TER can be produced in a simpler junction scheme—a direct contact between a metal and an oxide—through a different mechanism: a reversible redox reaction that modifies the oxide’s ground-state. This is shown in junctions based on a cuprate superconductor, whose ground-state is sensitive to the oxygen stoichiometry and can be tracked in operando via changes in the conductance spectra. Furthermore, we find that electrochemistry is the governing mechanism even if a ferroelectric is placed between the metal and the oxide. Finally, we extend the concept of electroresistance to the tunnelling of superconducting quasiparticles, for which the switching effects are much stronger than for normal electrons. Besides providing crucial understanding, our results provide a basis for non-volatile Josephson memory devices.
format Online
Article
Text
id pubmed-6994500
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69945002020-02-03 Quasiparticle tunnel electroresistance in superconducting junctions Rouco, V. Hage, R. El Sander, A. Grandal, J. Seurre, K. Palermo, X. Briatico, J. Collin, S. Trastoy, J. Bouzehouane, K. Buzdin, A. I. Singh, G. Bergeal, N. Feuillet-Palma, C. Lesueur, J. Leon, C. Varela, M. Santamaría, J. Villegas, Javier E. Nat Commun Article The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate that effects functionally indistinguishable from the TER can be produced in a simpler junction scheme—a direct contact between a metal and an oxide—through a different mechanism: a reversible redox reaction that modifies the oxide’s ground-state. This is shown in junctions based on a cuprate superconductor, whose ground-state is sensitive to the oxygen stoichiometry and can be tracked in operando via changes in the conductance spectra. Furthermore, we find that electrochemistry is the governing mechanism even if a ferroelectric is placed between the metal and the oxide. Finally, we extend the concept of electroresistance to the tunnelling of superconducting quasiparticles, for which the switching effects are much stronger than for normal electrons. Besides providing crucial understanding, our results provide a basis for non-volatile Josephson memory devices. Nature Publishing Group UK 2020-01-31 /pmc/articles/PMC6994500/ /pubmed/32005810 http://dx.doi.org/10.1038/s41467-020-14379-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Rouco, V.
Hage, R. El
Sander, A.
Grandal, J.
Seurre, K.
Palermo, X.
Briatico, J.
Collin, S.
Trastoy, J.
Bouzehouane, K.
Buzdin, A. I.
Singh, G.
Bergeal, N.
Feuillet-Palma, C.
Lesueur, J.
Leon, C.
Varela, M.
Santamaría, J.
Villegas, Javier E.
Quasiparticle tunnel electroresistance in superconducting junctions
title Quasiparticle tunnel electroresistance in superconducting junctions
title_full Quasiparticle tunnel electroresistance in superconducting junctions
title_fullStr Quasiparticle tunnel electroresistance in superconducting junctions
title_full_unstemmed Quasiparticle tunnel electroresistance in superconducting junctions
title_short Quasiparticle tunnel electroresistance in superconducting junctions
title_sort quasiparticle tunnel electroresistance in superconducting junctions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994500/
https://www.ncbi.nlm.nih.gov/pubmed/32005810
http://dx.doi.org/10.1038/s41467-020-14379-w
work_keys_str_mv AT roucov quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT hagerel quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT sandera quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT grandalj quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT seurrek quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT palermox quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT briaticoj quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT collins quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT trastoyj quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT bouzehouanek quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT buzdinai quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT singhg quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT bergealn quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT feuilletpalmac quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT lesueurj quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT leonc quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT varelam quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT santamariaj quasiparticletunnelelectroresistanceinsuperconductingjunctions
AT villegasjaviere quasiparticletunnelelectroresistanceinsuperconductingjunctions