Cargando…
Quasiparticle tunnel electroresistance in superconducting junctions
The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate t...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994500/ https://www.ncbi.nlm.nih.gov/pubmed/32005810 http://dx.doi.org/10.1038/s41467-020-14379-w |
_version_ | 1783493204004306944 |
---|---|
author | Rouco, V. Hage, R. El Sander, A. Grandal, J. Seurre, K. Palermo, X. Briatico, J. Collin, S. Trastoy, J. Bouzehouane, K. Buzdin, A. I. Singh, G. Bergeal, N. Feuillet-Palma, C. Lesueur, J. Leon, C. Varela, M. Santamaría, J. Villegas, Javier E. |
author_facet | Rouco, V. Hage, R. El Sander, A. Grandal, J. Seurre, K. Palermo, X. Briatico, J. Collin, S. Trastoy, J. Bouzehouane, K. Buzdin, A. I. Singh, G. Bergeal, N. Feuillet-Palma, C. Lesueur, J. Leon, C. Varela, M. Santamaría, J. Villegas, Javier E. |
author_sort | Rouco, V. |
collection | PubMed |
description | The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate that effects functionally indistinguishable from the TER can be produced in a simpler junction scheme—a direct contact between a metal and an oxide—through a different mechanism: a reversible redox reaction that modifies the oxide’s ground-state. This is shown in junctions based on a cuprate superconductor, whose ground-state is sensitive to the oxygen stoichiometry and can be tracked in operando via changes in the conductance spectra. Furthermore, we find that electrochemistry is the governing mechanism even if a ferroelectric is placed between the metal and the oxide. Finally, we extend the concept of electroresistance to the tunnelling of superconducting quasiparticles, for which the switching effects are much stronger than for normal electrons. Besides providing crucial understanding, our results provide a basis for non-volatile Josephson memory devices. |
format | Online Article Text |
id | pubmed-6994500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69945002020-02-03 Quasiparticle tunnel electroresistance in superconducting junctions Rouco, V. Hage, R. El Sander, A. Grandal, J. Seurre, K. Palermo, X. Briatico, J. Collin, S. Trastoy, J. Bouzehouane, K. Buzdin, A. I. Singh, G. Bergeal, N. Feuillet-Palma, C. Lesueur, J. Leon, C. Varela, M. Santamaría, J. Villegas, Javier E. Nat Commun Article The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate that effects functionally indistinguishable from the TER can be produced in a simpler junction scheme—a direct contact between a metal and an oxide—through a different mechanism: a reversible redox reaction that modifies the oxide’s ground-state. This is shown in junctions based on a cuprate superconductor, whose ground-state is sensitive to the oxygen stoichiometry and can be tracked in operando via changes in the conductance spectra. Furthermore, we find that electrochemistry is the governing mechanism even if a ferroelectric is placed between the metal and the oxide. Finally, we extend the concept of electroresistance to the tunnelling of superconducting quasiparticles, for which the switching effects are much stronger than for normal electrons. Besides providing crucial understanding, our results provide a basis for non-volatile Josephson memory devices. Nature Publishing Group UK 2020-01-31 /pmc/articles/PMC6994500/ /pubmed/32005810 http://dx.doi.org/10.1038/s41467-020-14379-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Rouco, V. Hage, R. El Sander, A. Grandal, J. Seurre, K. Palermo, X. Briatico, J. Collin, S. Trastoy, J. Bouzehouane, K. Buzdin, A. I. Singh, G. Bergeal, N. Feuillet-Palma, C. Lesueur, J. Leon, C. Varela, M. Santamaría, J. Villegas, Javier E. Quasiparticle tunnel electroresistance in superconducting junctions |
title | Quasiparticle tunnel electroresistance in superconducting junctions |
title_full | Quasiparticle tunnel electroresistance in superconducting junctions |
title_fullStr | Quasiparticle tunnel electroresistance in superconducting junctions |
title_full_unstemmed | Quasiparticle tunnel electroresistance in superconducting junctions |
title_short | Quasiparticle tunnel electroresistance in superconducting junctions |
title_sort | quasiparticle tunnel electroresistance in superconducting junctions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994500/ https://www.ncbi.nlm.nih.gov/pubmed/32005810 http://dx.doi.org/10.1038/s41467-020-14379-w |
work_keys_str_mv | AT roucov quasiparticletunnelelectroresistanceinsuperconductingjunctions AT hagerel quasiparticletunnelelectroresistanceinsuperconductingjunctions AT sandera quasiparticletunnelelectroresistanceinsuperconductingjunctions AT grandalj quasiparticletunnelelectroresistanceinsuperconductingjunctions AT seurrek quasiparticletunnelelectroresistanceinsuperconductingjunctions AT palermox quasiparticletunnelelectroresistanceinsuperconductingjunctions AT briaticoj quasiparticletunnelelectroresistanceinsuperconductingjunctions AT collins quasiparticletunnelelectroresistanceinsuperconductingjunctions AT trastoyj quasiparticletunnelelectroresistanceinsuperconductingjunctions AT bouzehouanek quasiparticletunnelelectroresistanceinsuperconductingjunctions AT buzdinai quasiparticletunnelelectroresistanceinsuperconductingjunctions AT singhg quasiparticletunnelelectroresistanceinsuperconductingjunctions AT bergealn quasiparticletunnelelectroresistanceinsuperconductingjunctions AT feuilletpalmac quasiparticletunnelelectroresistanceinsuperconductingjunctions AT lesueurj quasiparticletunnelelectroresistanceinsuperconductingjunctions AT leonc quasiparticletunnelelectroresistanceinsuperconductingjunctions AT varelam quasiparticletunnelelectroresistanceinsuperconductingjunctions AT santamariaj quasiparticletunnelelectroresistanceinsuperconductingjunctions AT villegasjaviere quasiparticletunnelelectroresistanceinsuperconductingjunctions |