Cargando…

Histopathological imaging database for oral cancer analysis

The repository is composed of 1224 images divided into two sets of images with two different resolutions. First set consists of 89 histopathological images with the normal epithelium of the oral cavity and 439 images of Oral Squamous Cell Carcinoma (OSCC) in 100x magnification. The second set consis...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahman, Tabassum Yesmin, Mahanta, Lipi B., Das, Anup K., Sarma, Jagannath D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994517/
https://www.ncbi.nlm.nih.gov/pubmed/32021884
http://dx.doi.org/10.1016/j.dib.2020.105114
_version_ 1783493207682711552
author Rahman, Tabassum Yesmin
Mahanta, Lipi B.
Das, Anup K.
Sarma, Jagannath D.
author_facet Rahman, Tabassum Yesmin
Mahanta, Lipi B.
Das, Anup K.
Sarma, Jagannath D.
author_sort Rahman, Tabassum Yesmin
collection PubMed
description The repository is composed of 1224 images divided into two sets of images with two different resolutions. First set consists of 89 histopathological images with the normal epithelium of the oral cavity and 439 images of Oral Squamous Cell Carcinoma (OSCC) in 100x magnification. The second set consists of 201 images with the normal epithelium of the oral cavity and 495 histopathological images of OSCC in 400x magnification. The images were captured using a Leica ICC50 HD microscope from Hematoxyline and Eosin (H&E) stained tissue slides collected, prepared and catalogued by medical experts from 230 patients. A subset of 269 images from the second data set was used to detect OSCC based on textural features [1]. Histopathology plays a very important role in diagnosing a disease. It is the investigation of biological tissues to detect the presence of diseased cells in microscopic detail. It usually involves a biopsy. Till date biopsy is the gold-standard test to diagnose cancer. The biopsy slides are examined based on various cytological criteria under a microscope. Therefore, there is a high possibility of not retaining uniformity and ensuring reproducibility in outcomes [2, 3]. Computational diagnostic tools, on the other hand, facilitate objective judgments by making the use of the quantitative measure. This dataset can be utilized in establishing automated diagnostic tool using Artificial Intelligence approaches.
format Online
Article
Text
id pubmed-6994517
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69945172020-02-04 Histopathological imaging database for oral cancer analysis Rahman, Tabassum Yesmin Mahanta, Lipi B. Das, Anup K. Sarma, Jagannath D. Data Brief Computer Science The repository is composed of 1224 images divided into two sets of images with two different resolutions. First set consists of 89 histopathological images with the normal epithelium of the oral cavity and 439 images of Oral Squamous Cell Carcinoma (OSCC) in 100x magnification. The second set consists of 201 images with the normal epithelium of the oral cavity and 495 histopathological images of OSCC in 400x magnification. The images were captured using a Leica ICC50 HD microscope from Hematoxyline and Eosin (H&E) stained tissue slides collected, prepared and catalogued by medical experts from 230 patients. A subset of 269 images from the second data set was used to detect OSCC based on textural features [1]. Histopathology plays a very important role in diagnosing a disease. It is the investigation of biological tissues to detect the presence of diseased cells in microscopic detail. It usually involves a biopsy. Till date biopsy is the gold-standard test to diagnose cancer. The biopsy slides are examined based on various cytological criteria under a microscope. Therefore, there is a high possibility of not retaining uniformity and ensuring reproducibility in outcomes [2, 3]. Computational diagnostic tools, on the other hand, facilitate objective judgments by making the use of the quantitative measure. This dataset can be utilized in establishing automated diagnostic tool using Artificial Intelligence approaches. Elsevier 2020-01-13 /pmc/articles/PMC6994517/ /pubmed/32021884 http://dx.doi.org/10.1016/j.dib.2020.105114 Text en © 2020 The Authors. Published by Elsevier Inc. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Computer Science
Rahman, Tabassum Yesmin
Mahanta, Lipi B.
Das, Anup K.
Sarma, Jagannath D.
Histopathological imaging database for oral cancer analysis
title Histopathological imaging database for oral cancer analysis
title_full Histopathological imaging database for oral cancer analysis
title_fullStr Histopathological imaging database for oral cancer analysis
title_full_unstemmed Histopathological imaging database for oral cancer analysis
title_short Histopathological imaging database for oral cancer analysis
title_sort histopathological imaging database for oral cancer analysis
topic Computer Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994517/
https://www.ncbi.nlm.nih.gov/pubmed/32021884
http://dx.doi.org/10.1016/j.dib.2020.105114
work_keys_str_mv AT rahmantabassumyesmin histopathologicalimagingdatabasefororalcanceranalysis
AT mahantalipib histopathologicalimagingdatabasefororalcanceranalysis
AT dasanupk histopathologicalimagingdatabasefororalcanceranalysis
AT sarmajagannathd histopathologicalimagingdatabasefororalcanceranalysis