Cargando…

Bayesian inference for dynamical systems

Bayesian inference is a common method for conducting parameter estimation for dynamical systems. Despite the prevalent use of Bayesian inference for performing parameter estimation for dynamical systems, there is a need for a formalized and detailed methodology. This paper presents a comprehensive m...

Descripción completa

Detalles Bibliográficos
Autor principal: Roda, Weston C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994543/
https://www.ncbi.nlm.nih.gov/pubmed/32021948
http://dx.doi.org/10.1016/j.idm.2019.12.007
_version_ 1783493213705732096
author Roda, Weston C.
author_facet Roda, Weston C.
author_sort Roda, Weston C.
collection PubMed
description Bayesian inference is a common method for conducting parameter estimation for dynamical systems. Despite the prevalent use of Bayesian inference for performing parameter estimation for dynamical systems, there is a need for a formalized and detailed methodology. This paper presents a comprehensive methodology for dynamical system parameter estimation using Bayesian inference and it covers utilizing different distributions, Markov Chain Monte Carlo (MCMC) sampling, obtaining credible intervals for parameters, and prediction intervals for solutions. A logistic growth example is given to illustrate the methodology.
format Online
Article
Text
id pubmed-6994543
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-69945432020-02-04 Bayesian inference for dynamical systems Roda, Weston C. Infect Dis Model Confronting Infectious Disease Models with Public Health Data; Edited by Prof. Michael Li, Prof. Julien Arino, Prof. Junling Ma, Prof. Zen Jin Bayesian inference is a common method for conducting parameter estimation for dynamical systems. Despite the prevalent use of Bayesian inference for performing parameter estimation for dynamical systems, there is a need for a formalized and detailed methodology. This paper presents a comprehensive methodology for dynamical system parameter estimation using Bayesian inference and it covers utilizing different distributions, Markov Chain Monte Carlo (MCMC) sampling, obtaining credible intervals for parameters, and prediction intervals for solutions. A logistic growth example is given to illustrate the methodology. KeAi Publishing 2020-01-10 /pmc/articles/PMC6994543/ /pubmed/32021948 http://dx.doi.org/10.1016/j.idm.2019.12.007 Text en © 2019 The Author http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Confronting Infectious Disease Models with Public Health Data; Edited by Prof. Michael Li, Prof. Julien Arino, Prof. Junling Ma, Prof. Zen Jin
Roda, Weston C.
Bayesian inference for dynamical systems
title Bayesian inference for dynamical systems
title_full Bayesian inference for dynamical systems
title_fullStr Bayesian inference for dynamical systems
title_full_unstemmed Bayesian inference for dynamical systems
title_short Bayesian inference for dynamical systems
title_sort bayesian inference for dynamical systems
topic Confronting Infectious Disease Models with Public Health Data; Edited by Prof. Michael Li, Prof. Julien Arino, Prof. Junling Ma, Prof. Zen Jin
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994543/
https://www.ncbi.nlm.nih.gov/pubmed/32021948
http://dx.doi.org/10.1016/j.idm.2019.12.007
work_keys_str_mv AT rodawestonc bayesianinferencefordynamicalsystems