Cargando…
Bayesian inference for dynamical systems
Bayesian inference is a common method for conducting parameter estimation for dynamical systems. Despite the prevalent use of Bayesian inference for performing parameter estimation for dynamical systems, there is a need for a formalized and detailed methodology. This paper presents a comprehensive m...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994543/ https://www.ncbi.nlm.nih.gov/pubmed/32021948 http://dx.doi.org/10.1016/j.idm.2019.12.007 |
_version_ | 1783493213705732096 |
---|---|
author | Roda, Weston C. |
author_facet | Roda, Weston C. |
author_sort | Roda, Weston C. |
collection | PubMed |
description | Bayesian inference is a common method for conducting parameter estimation for dynamical systems. Despite the prevalent use of Bayesian inference for performing parameter estimation for dynamical systems, there is a need for a formalized and detailed methodology. This paper presents a comprehensive methodology for dynamical system parameter estimation using Bayesian inference and it covers utilizing different distributions, Markov Chain Monte Carlo (MCMC) sampling, obtaining credible intervals for parameters, and prediction intervals for solutions. A logistic growth example is given to illustrate the methodology. |
format | Online Article Text |
id | pubmed-6994543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-69945432020-02-04 Bayesian inference for dynamical systems Roda, Weston C. Infect Dis Model Confronting Infectious Disease Models with Public Health Data; Edited by Prof. Michael Li, Prof. Julien Arino, Prof. Junling Ma, Prof. Zen Jin Bayesian inference is a common method for conducting parameter estimation for dynamical systems. Despite the prevalent use of Bayesian inference for performing parameter estimation for dynamical systems, there is a need for a formalized and detailed methodology. This paper presents a comprehensive methodology for dynamical system parameter estimation using Bayesian inference and it covers utilizing different distributions, Markov Chain Monte Carlo (MCMC) sampling, obtaining credible intervals for parameters, and prediction intervals for solutions. A logistic growth example is given to illustrate the methodology. KeAi Publishing 2020-01-10 /pmc/articles/PMC6994543/ /pubmed/32021948 http://dx.doi.org/10.1016/j.idm.2019.12.007 Text en © 2019 The Author http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Confronting Infectious Disease Models with Public Health Data; Edited by Prof. Michael Li, Prof. Julien Arino, Prof. Junling Ma, Prof. Zen Jin Roda, Weston C. Bayesian inference for dynamical systems |
title | Bayesian inference for dynamical systems |
title_full | Bayesian inference for dynamical systems |
title_fullStr | Bayesian inference for dynamical systems |
title_full_unstemmed | Bayesian inference for dynamical systems |
title_short | Bayesian inference for dynamical systems |
title_sort | bayesian inference for dynamical systems |
topic | Confronting Infectious Disease Models with Public Health Data; Edited by Prof. Michael Li, Prof. Julien Arino, Prof. Junling Ma, Prof. Zen Jin |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994543/ https://www.ncbi.nlm.nih.gov/pubmed/32021948 http://dx.doi.org/10.1016/j.idm.2019.12.007 |
work_keys_str_mv | AT rodawestonc bayesianinferencefordynamicalsystems |