Cargando…
Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island
Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non–native kelp washed up on Antarctic beaches led us to question the permeability of these barr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994651/ https://www.ncbi.nlm.nih.gov/pubmed/32005904 http://dx.doi.org/10.1038/s41598-020-58561-y |
_version_ | 1783493237957197824 |
---|---|
author | Avila, Conxita Angulo-Preckler, Carlos Martín-Martín, Rafael P. Figuerola, Blanca Griffiths, Huw James Waller, Catherine Louise |
author_facet | Avila, Conxita Angulo-Preckler, Carlos Martín-Martín, Rafael P. Figuerola, Blanca Griffiths, Huw James Waller, Catherine Louise |
author_sort | Avila, Conxita |
collection | PubMed |
description | Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non–native kelp washed up on Antarctic beaches led us to question the permeability of these barriers to species dispersal. According to the literature, over 70 million kelp rafts are afloat in the Southern Ocean at any one time. These living, floating islands can play host to a range of passenger species from both their original coastal location and those picked in the open ocean. Driven by winds, currents and storms towards the coast of the continent, these rafts are often cited as theoretical vectors for the introduction of new species into Antarctica and the sub-Antarctic islands. We found non-native kelps, with a wide range of “hitchhiking” passenger organisms, on an Antarctic beach inside the flooded caldera of an active volcanic island. This is the first evidence of non-native species reaching the Antarctic continent alive on kelp rafts. One passenger species, the bryozoan Membranipora membranacea, is found to be an invasive and ecologically harmful species in some cold-water regions, and this is its first record from Antarctica. The caldera of Deception Island provides considerably milder conditions than the frigid surrounding waters and it could be an ideal location for newly introduced species to become established. These findings may help to explain many of the biogeographic patterns and connections we currently see in the Southern Ocean. However, with the impacts of climate change in the region we may see an increase in the range and number of organisms capable of surviving both the long journey and becoming successfully established. |
format | Online Article Text |
id | pubmed-6994651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69946512020-02-06 Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island Avila, Conxita Angulo-Preckler, Carlos Martín-Martín, Rafael P. Figuerola, Blanca Griffiths, Huw James Waller, Catherine Louise Sci Rep Article Antarctic shallow coastal marine communities were long thought to be isolated from their nearest neighbours by hundreds of kilometres of deep ocean and the Antarctic Circumpolar Current. The discovery of non–native kelp washed up on Antarctic beaches led us to question the permeability of these barriers to species dispersal. According to the literature, over 70 million kelp rafts are afloat in the Southern Ocean at any one time. These living, floating islands can play host to a range of passenger species from both their original coastal location and those picked in the open ocean. Driven by winds, currents and storms towards the coast of the continent, these rafts are often cited as theoretical vectors for the introduction of new species into Antarctica and the sub-Antarctic islands. We found non-native kelps, with a wide range of “hitchhiking” passenger organisms, on an Antarctic beach inside the flooded caldera of an active volcanic island. This is the first evidence of non-native species reaching the Antarctic continent alive on kelp rafts. One passenger species, the bryozoan Membranipora membranacea, is found to be an invasive and ecologically harmful species in some cold-water regions, and this is its first record from Antarctica. The caldera of Deception Island provides considerably milder conditions than the frigid surrounding waters and it could be an ideal location for newly introduced species to become established. These findings may help to explain many of the biogeographic patterns and connections we currently see in the Southern Ocean. However, with the impacts of climate change in the region we may see an increase in the range and number of organisms capable of surviving both the long journey and becoming successfully established. Nature Publishing Group UK 2020-01-31 /pmc/articles/PMC6994651/ /pubmed/32005904 http://dx.doi.org/10.1038/s41598-020-58561-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Avila, Conxita Angulo-Preckler, Carlos Martín-Martín, Rafael P. Figuerola, Blanca Griffiths, Huw James Waller, Catherine Louise Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island |
title | Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island |
title_full | Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island |
title_fullStr | Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island |
title_full_unstemmed | Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island |
title_short | Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island |
title_sort | invasive marine species discovered on non–native kelp rafts in the warmest antarctic island |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994651/ https://www.ncbi.nlm.nih.gov/pubmed/32005904 http://dx.doi.org/10.1038/s41598-020-58561-y |
work_keys_str_mv | AT avilaconxita invasivemarinespeciesdiscoveredonnonnativekelpraftsinthewarmestantarcticisland AT anguloprecklercarlos invasivemarinespeciesdiscoveredonnonnativekelpraftsinthewarmestantarcticisland AT martinmartinrafaelp invasivemarinespeciesdiscoveredonnonnativekelpraftsinthewarmestantarcticisland AT figuerolablanca invasivemarinespeciesdiscoveredonnonnativekelpraftsinthewarmestantarcticisland AT griffithshuwjames invasivemarinespeciesdiscoveredonnonnativekelpraftsinthewarmestantarcticisland AT wallercatherinelouise invasivemarinespeciesdiscoveredonnonnativekelpraftsinthewarmestantarcticisland |