Cargando…
A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism
Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, wh...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994702/ https://www.ncbi.nlm.nih.gov/pubmed/32005828 http://dx.doi.org/10.1038/s41467-020-14323-y |
_version_ | 1783493249896284160 |
---|---|
author | Pradas-Juni, Marta Hansmeier, Nils R. Link, Jenny C. Schmidt, Elena Larsen, Bjørk Ditlev Klemm, Paul Meola, Nicola Topel, Hande Loureiro, Rute Dhaouadi, Ines Kiefer, Christoph A. Schwarzer, Robin Khani, Sajjad Oliverio, Matteo Awazawa, Motoharu Frommolt, Peter Heeren, Joerg Scheja, Ludger Heine, Markus Dieterich, Christoph Büning, Hildegard Yang, Ling Cao, Haiming Jesus, Dario F. De Kulkarni, Rohit N. Zevnik, Branko Tröder, Simon E. Knippschild, Uwe Edwards, Peter A. Lee, Richard G. Yamamoto, Masayuki Ulitsky, Igor Fernandez-Rebollo, Eduardo Vallim, Thomas Q. de Aguiar Kornfeld, Jan-Wilhelm |
author_facet | Pradas-Juni, Marta Hansmeier, Nils R. Link, Jenny C. Schmidt, Elena Larsen, Bjørk Ditlev Klemm, Paul Meola, Nicola Topel, Hande Loureiro, Rute Dhaouadi, Ines Kiefer, Christoph A. Schwarzer, Robin Khani, Sajjad Oliverio, Matteo Awazawa, Motoharu Frommolt, Peter Heeren, Joerg Scheja, Ludger Heine, Markus Dieterich, Christoph Büning, Hildegard Yang, Ling Cao, Haiming Jesus, Dario F. De Kulkarni, Rohit N. Zevnik, Branko Tröder, Simon E. Knippschild, Uwe Edwards, Peter A. Lee, Richard G. Yamamoto, Masayuki Ulitsky, Igor Fernandez-Rebollo, Eduardo Vallim, Thomas Q. de Aguiar Kornfeld, Jan-Wilhelm |
author_sort | Pradas-Juni, Marta |
collection | PubMed |
description | Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease. |
format | Online Article Text |
id | pubmed-6994702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69947022020-02-03 A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism Pradas-Juni, Marta Hansmeier, Nils R. Link, Jenny C. Schmidt, Elena Larsen, Bjørk Ditlev Klemm, Paul Meola, Nicola Topel, Hande Loureiro, Rute Dhaouadi, Ines Kiefer, Christoph A. Schwarzer, Robin Khani, Sajjad Oliverio, Matteo Awazawa, Motoharu Frommolt, Peter Heeren, Joerg Scheja, Ludger Heine, Markus Dieterich, Christoph Büning, Hildegard Yang, Ling Cao, Haiming Jesus, Dario F. De Kulkarni, Rohit N. Zevnik, Branko Tröder, Simon E. Knippschild, Uwe Edwards, Peter A. Lee, Richard G. Yamamoto, Masayuki Ulitsky, Igor Fernandez-Rebollo, Eduardo Vallim, Thomas Q. de Aguiar Kornfeld, Jan-Wilhelm Nat Commun Article Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease. Nature Publishing Group UK 2020-01-31 /pmc/articles/PMC6994702/ /pubmed/32005828 http://dx.doi.org/10.1038/s41467-020-14323-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Pradas-Juni, Marta Hansmeier, Nils R. Link, Jenny C. Schmidt, Elena Larsen, Bjørk Ditlev Klemm, Paul Meola, Nicola Topel, Hande Loureiro, Rute Dhaouadi, Ines Kiefer, Christoph A. Schwarzer, Robin Khani, Sajjad Oliverio, Matteo Awazawa, Motoharu Frommolt, Peter Heeren, Joerg Scheja, Ludger Heine, Markus Dieterich, Christoph Büning, Hildegard Yang, Ling Cao, Haiming Jesus, Dario F. De Kulkarni, Rohit N. Zevnik, Branko Tröder, Simon E. Knippschild, Uwe Edwards, Peter A. Lee, Richard G. Yamamoto, Masayuki Ulitsky, Igor Fernandez-Rebollo, Eduardo Vallim, Thomas Q. de Aguiar Kornfeld, Jan-Wilhelm A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism |
title | A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism |
title_full | A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism |
title_fullStr | A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism |
title_full_unstemmed | A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism |
title_short | A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism |
title_sort | mafg-lncrna axis links systemic nutrient abundance to hepatic glucose metabolism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994702/ https://www.ncbi.nlm.nih.gov/pubmed/32005828 http://dx.doi.org/10.1038/s41467-020-14323-y |
work_keys_str_mv | AT pradasjunimarta amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT hansmeiernilsr amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT linkjennyc amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT schmidtelena amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT larsenbjørkditlev amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT klemmpaul amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT meolanicola amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT topelhande amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT loureirorute amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT dhaouadiines amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT kieferchristopha amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT schwarzerrobin amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT khanisajjad amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT oliveriomatteo amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT awazawamotoharu amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT frommoltpeter amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT heerenjoerg amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT schejaludger amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT heinemarkus amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT dieterichchristoph amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT buninghildegard amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT yangling amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT caohaiming amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT jesusdariofde amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT kulkarnirohitn amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT zevnikbranko amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT trodersimone amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT knippschilduwe amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT edwardspetera amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT leerichardg amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT yamamotomasayuki amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT ulitskyigor amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT fernandezrebolloeduardo amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT vallimthomasqdeaguiar amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT kornfeldjanwilhelm amafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT pradasjunimarta mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT hansmeiernilsr mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT linkjennyc mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT schmidtelena mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT larsenbjørkditlev mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT klemmpaul mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT meolanicola mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT topelhande mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT loureirorute mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT dhaouadiines mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT kieferchristopha mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT schwarzerrobin mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT khanisajjad mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT oliveriomatteo mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT awazawamotoharu mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT frommoltpeter mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT heerenjoerg mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT schejaludger mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT heinemarkus mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT dieterichchristoph mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT buninghildegard mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT yangling mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT caohaiming mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT jesusdariofde mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT kulkarnirohitn mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT zevnikbranko mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT trodersimone mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT knippschilduwe mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT edwardspetera mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT leerichardg mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT yamamotomasayuki mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT ulitskyigor mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT fernandezrebolloeduardo mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT vallimthomasqdeaguiar mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism AT kornfeldjanwilhelm mafglncrnaaxislinkssystemicnutrientabundancetohepaticglucosemetabolism |