Cargando…

An insertion mutation of ERBB2 enhances breast cancer cell growth and confers resistance to lapatinib through AKT signaling pathway

In clinical practice, some breast cancer (BC) patients carry a rare ERBB2 in-frame insertion (p. Pro780_Tyr781insGlySerPro) and are resistant to anti-ERBB2 therapy. To explore the potential procarcinogenic role of this ERBB2 mutation, we conducted the present study using BC cells overexpressing wild...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zi-Yan, Yang, Liu, Xu, Chun-Wei, Wang, Xiao-Jia, Lei, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994922/
https://www.ncbi.nlm.nih.gov/pubmed/31980423
http://dx.doi.org/10.1242/bio.047662
Descripción
Sumario:In clinical practice, some breast cancer (BC) patients carry a rare ERBB2 in-frame insertion (p. Pro780_Tyr781insGlySerPro) and are resistant to anti-ERBB2 therapy. To explore the potential procarcinogenic role of this ERBB2 mutation, we conducted the present study using BC cells overexpressing wild-type (WT) ERBB2 or P780-Y781 ERBB2 [mutated (MT)]. MDA-MB-231 and MCF-7 cells were transfected with the following plasmids using a lentivirus system: negative control (ERBB2-NC), WT ERBB2 overexpression (ERBB2-WT), and P780-Y781 ERBB2 overexpression (ERBB2-MT). P780-Y781 ERBB2 conferred significant resistance to lapatinib, as assessed by cell viability and colony counts. Analysis of the cell cycle showed that the P780-Y781 ERBB2 group showed an elevated proportion of cells in S, G2, and M phases compared with WT ERBB2 when exposed to lapatinib. Following lapatinib treatment, phosphorylated AKT (p-AKT) was strongly upregulated in the P780-Y781 ERBB2 group. Among ERBB2+ patients, the P780-Y781 ERBB2 group showed increased levels of p-AKT. Furthermore, the AKT inhibitor perifosine effectively suppressed lapatinib resistance, as indicated by the lapatinib inhibition curve and results of the colony formation assay, and decreased AKT phosphorylation. Altogether, we discovered a procarcinogenic mutation of ERBB2 that enhances BC cell growth through AKT signaling and causes resistance to lapatinib. Patients with this in-frame insertion mutation of ERBB2 should be recommended other therapeutic strategies apart from ERBB2 tyrosine kinase inhibitors, in particular lapatinib.