Cargando…
Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing
Segmentation is one of the most important stages in the 3D reconstruction of macromolecule structures in cryo-electron microscopy. Due to the variability of macromolecules and the low signal-to-noise ratio of the structures present, there is no generally satisfactory solution to this process. This w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995569/ https://www.ncbi.nlm.nih.gov/pubmed/31801266 http://dx.doi.org/10.3390/biom9120809 |
_version_ | 1783493398848602112 |
---|---|
author | Carrasco, Miguel Toledo, Patricio Tischler, Nicole D. |
author_facet | Carrasco, Miguel Toledo, Patricio Tischler, Nicole D. |
author_sort | Carrasco, Miguel |
collection | PubMed |
description | Segmentation is one of the most important stages in the 3D reconstruction of macromolecule structures in cryo-electron microscopy. Due to the variability of macromolecules and the low signal-to-noise ratio of the structures present, there is no generally satisfactory solution to this process. This work proposes a new unsupervised particle picking and segmentation algorithm based on the composition of two well-known image filters: Anisotropic (Perona–Malik) diffusion and non-negative matrix factorization. This study focused on keyhole limpet hemocyanin (KLH) macromolecules which offer both a top view and a side view. Our proposal was able to detect both types of views and separate them automatically. In our experiments, we used 30 images from the KLH dataset of 680 positive classified regions. The true positive rate was 95.1% for top views and 77.8% for side views. The false negative rate was 14.3%. Although the false positive rate was high at 21.8%, it can be lowered with a supervised classification technique. |
format | Online Article Text |
id | pubmed-6995569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69955692020-02-13 Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing Carrasco, Miguel Toledo, Patricio Tischler, Nicole D. Biomolecules Article Segmentation is one of the most important stages in the 3D reconstruction of macromolecule structures in cryo-electron microscopy. Due to the variability of macromolecules and the low signal-to-noise ratio of the structures present, there is no generally satisfactory solution to this process. This work proposes a new unsupervised particle picking and segmentation algorithm based on the composition of two well-known image filters: Anisotropic (Perona–Malik) diffusion and non-negative matrix factorization. This study focused on keyhole limpet hemocyanin (KLH) macromolecules which offer both a top view and a side view. Our proposal was able to detect both types of views and separate them automatically. In our experiments, we used 30 images from the KLH dataset of 680 positive classified regions. The true positive rate was 95.1% for top views and 77.8% for side views. The false negative rate was 14.3%. Although the false positive rate was high at 21.8%, it can be lowered with a supervised classification technique. MDPI 2019-11-30 /pmc/articles/PMC6995569/ /pubmed/31801266 http://dx.doi.org/10.3390/biom9120809 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carrasco, Miguel Toledo, Patricio Tischler, Nicole D. Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing |
title | Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing |
title_full | Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing |
title_fullStr | Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing |
title_full_unstemmed | Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing |
title_short | Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing |
title_sort | macromolecule particle picking and segmentation of a klh database by unsupervised cryo-em image processing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995569/ https://www.ncbi.nlm.nih.gov/pubmed/31801266 http://dx.doi.org/10.3390/biom9120809 |
work_keys_str_mv | AT carrascomiguel macromoleculeparticlepickingandsegmentationofaklhdatabasebyunsupervisedcryoemimageprocessing AT toledopatricio macromoleculeparticlepickingandsegmentationofaklhdatabasebyunsupervisedcryoemimageprocessing AT tischlernicoled macromoleculeparticlepickingandsegmentationofaklhdatabasebyunsupervisedcryoemimageprocessing |