Cargando…

Configuration and rapid start-up of a novel combined microbial electrolytic process treating fecal sewage

Most of the developing countries are in need of sanitary toilets due to insufficient supporting facilities and proven technology mainly on disposal of fecal sewage. A microbial fuel cell (MFC)-microbial electrolytic cell (MEC) coupling with an anaerobic baffle reactor (ABR) was used to realize simul...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hongbo, Lv, Yicheng, Xu, Suyun, Chen, Zhongbing, Lichtfouse, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995997/
https://www.ncbi.nlm.nih.gov/pubmed/31841910
http://dx.doi.org/10.1016/j.scitotenv.2019.135986
Descripción
Sumario:Most of the developing countries are in need of sanitary toilets due to insufficient supporting facilities and proven technology mainly on disposal of fecal sewage. A microbial fuel cell (MFC)-microbial electrolytic cell (MEC) coupling with an anaerobic baffle reactor (ABR) was used to realize simultaneous removal of nitrogen and carbon in fecal sewage and complete energy recycling. Configuration and rapid start-up of the ABR-MFC-MEC process treating fecal sewage was systematically studied. Results showed that the application of an external voltage of 0.5 V can shorten the start-up time and improve hydrogen production rate to 3.42 × 10(−3) m(3)-H(2)/m(3)/d in the MEC unit, where the double-chamber MFC can drive MEC completing the synchronous coupling start-up. In the single and double chamber systems, bio-electrochemical processes both enhanced shock resistance capacity of the whole ABR-MFC-MEC process during coupled operation, with chemical oxygen demand (COD) removal rates of 99.2% and 98.9% for the single and double chamber systems respectively. Based on results of biological analysis, the coupled system has a distinct selective effect on microbial population and each unit has high microbial diversity to enhance the stability and resistance of the whole system for treatment of feces and urine.