Cargando…

Homing of adipose stem cells on the human amniotic membrane as a scaffold: A histological study

BACKGROUND: The human amniotic membrane (HAM) is a suitable and effective scaffold for cell culture and delivery, and adipose-derived stem cells (ADSCs) are an important source of stem cells for transplantation and chondrogenic differentiation. OBJECTIVE: To assess the practicability of a cryopreser...

Descripción completa

Detalles Bibliográficos
Autores principales: Zarei, Hooman, Karimpour, Abbasali, Reza Khalatbary, Ali, Talebpour Amiri, Fereshteh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Knowledge E 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996125/
https://www.ncbi.nlm.nih.gov/pubmed/32043068
http://dx.doi.org/10.18502/ijrm.v18i1.6193
Descripción
Sumario:BACKGROUND: The human amniotic membrane (HAM) is a suitable and effective scaffold for cell culture and delivery, and adipose-derived stem cells (ADSCs) are an important source of stem cells for transplantation and chondrogenic differentiation. OBJECTIVE: To assess the practicability of a cryopreserved HAM as a scaffold in cell proliferation and differentiation in vitro. MATERIALS AND METHODS: In this experimental study, adipose tissue samples were harvested from the inguinal region of male patients aged 15-30 years. Flow cytometry was used to identify CD31, CD45, CD90, and CD105 markers in adipose stem cells. HAM was harvested from donor placenta after cesarean section, washed, trypsin-based decellularized trypsinized decellularized, and used as a scaffold via three methods: 1) ADSCs were differentiated into chondrocytes on cell culture flasks (monolayer method), and after 14 days of culture, the cells were transferred and cultured on both sides of the HAM; 2) ADSCs were cultured and differentiated directly on both sides of the HAM for 14 days (scaffold-mediated differentiation); and 3) chondrocytes were differentiated with micromass culture for 14 days, transferred on HAM, and tissue slides were histologically analyzed qualitatively. RESULTS: Flow cytometry confirmed the presence of mesenchymal stem cells. Histological findings revealed that the cells adhered and grew well on the stromal layer of HAM. Among the three methods, scaffold-mediated differentiation of ADSCs showed the best results. CONCLUSION: ADSCs have excellent attachment, viability, and differentiation capacity in the stromal side of HAM. Additionally, the direct culture and differentiation of ADSCs on HAM is more suitable than the culture of differentiated cells on HAM.