Cargando…
Unraveling the High Activity of Ylide-Functionalized Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative Study with (Cy)JohnPhos and PtBu(3)
[Image: see text] Comprehensive mechanistic insights into the activity of different catalysts based on different ligands are important for further ligand design and catalyst improvement. Herein, we report a combined computational and experimental study on the mechanism and catalytic activity of the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996648/ https://www.ncbi.nlm.nih.gov/pubmed/32030314 http://dx.doi.org/10.1021/acscatal.9b04666 |
_version_ | 1783493545976397824 |
---|---|
author | Scharf, Lennart T. Rodstein, Ilja Schmidt, Michelle Scherpf, Thorsten Gessner, Viktoria H. |
author_facet | Scharf, Lennart T. Rodstein, Ilja Schmidt, Michelle Scherpf, Thorsten Gessner, Viktoria H. |
author_sort | Scharf, Lennart T. |
collection | PubMed |
description | [Image: see text] Comprehensive mechanistic insights into the activity of different catalysts based on different ligands are important for further ligand design and catalyst improvement. Herein, we report a combined computational and experimental study on the mechanism and catalytic activity of the ylide-substituted phosphine Cy(3)P–C(Me)PCy(2) (keYPhos, L1) in C–N coupling reactions including a comparison with the established and often-applied phosphines (Cy)JohnPhos (L2) and P(tBu)(3) (L3). Density functional theory (DFT) calculations together with the possible isolation of several intermediates within the catalytic cycle demonstrate that L1 readily forms low-coordinated palladium complexes [such as L1·Pd(dba)], which easily undergo oxidative addition and subsequent amine coordination as well as reductive elimination. Due to the possible opening and closing of the P–C–P angle in L1, the steric bulk can be adjusted to the metal environment so that L1 retains its conformation throughout the whole catalytic cycle, thus leading to fast catalysis at room temperature. Comparative studies of the three ligands with Pd(2)dba(3) as a Pd source show that only L1 efficiently allows for the coupling of aryl chlorides at room temperature. DFT studies suggest that this is mainly due to the reluctance/inability of L2 and L3 to form the catalytically active species under these reaction conditions. In contrast, the YPhos ligand readily forms the prereactive complex and undergoes the first oxidative addition reaction. These observations are confirmed by kinetic studies, which indicate a short induction period for the formation of the catalytically active species of L1, followed by fast catalysis. This behavior of L1 is due to its unique electronic and steric properties, which support low activation barriers and fast catalyst generation. |
format | Online Article Text |
id | pubmed-6996648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69966482020-02-04 Unraveling the High Activity of Ylide-Functionalized Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative Study with (Cy)JohnPhos and PtBu(3) Scharf, Lennart T. Rodstein, Ilja Schmidt, Michelle Scherpf, Thorsten Gessner, Viktoria H. ACS Catal [Image: see text] Comprehensive mechanistic insights into the activity of different catalysts based on different ligands are important for further ligand design and catalyst improvement. Herein, we report a combined computational and experimental study on the mechanism and catalytic activity of the ylide-substituted phosphine Cy(3)P–C(Me)PCy(2) (keYPhos, L1) in C–N coupling reactions including a comparison with the established and often-applied phosphines (Cy)JohnPhos (L2) and P(tBu)(3) (L3). Density functional theory (DFT) calculations together with the possible isolation of several intermediates within the catalytic cycle demonstrate that L1 readily forms low-coordinated palladium complexes [such as L1·Pd(dba)], which easily undergo oxidative addition and subsequent amine coordination as well as reductive elimination. Due to the possible opening and closing of the P–C–P angle in L1, the steric bulk can be adjusted to the metal environment so that L1 retains its conformation throughout the whole catalytic cycle, thus leading to fast catalysis at room temperature. Comparative studies of the three ligands with Pd(2)dba(3) as a Pd source show that only L1 efficiently allows for the coupling of aryl chlorides at room temperature. DFT studies suggest that this is mainly due to the reluctance/inability of L2 and L3 to form the catalytically active species under these reaction conditions. In contrast, the YPhos ligand readily forms the prereactive complex and undergoes the first oxidative addition reaction. These observations are confirmed by kinetic studies, which indicate a short induction period for the formation of the catalytically active species of L1, followed by fast catalysis. This behavior of L1 is due to its unique electronic and steric properties, which support low activation barriers and fast catalyst generation. American Chemical Society 2019-12-11 2020-01-17 /pmc/articles/PMC6996648/ /pubmed/32030314 http://dx.doi.org/10.1021/acscatal.9b04666 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Scharf, Lennart T. Rodstein, Ilja Schmidt, Michelle Scherpf, Thorsten Gessner, Viktoria H. Unraveling the High Activity of Ylide-Functionalized Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative Study with (Cy)JohnPhos and PtBu(3) |
title | Unraveling the
High Activity of Ylide-Functionalized
Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative
Study with (Cy)JohnPhos and PtBu(3) |
title_full | Unraveling the
High Activity of Ylide-Functionalized
Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative
Study with (Cy)JohnPhos and PtBu(3) |
title_fullStr | Unraveling the
High Activity of Ylide-Functionalized
Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative
Study with (Cy)JohnPhos and PtBu(3) |
title_full_unstemmed | Unraveling the
High Activity of Ylide-Functionalized
Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative
Study with (Cy)JohnPhos and PtBu(3) |
title_short | Unraveling the
High Activity of Ylide-Functionalized
Phosphines in Palladium-Catalyzed Amination Reactions: A Comparative
Study with (Cy)JohnPhos and PtBu(3) |
title_sort | unraveling the
high activity of ylide-functionalized
phosphines in palladium-catalyzed amination reactions: a comparative
study with (cy)johnphos and ptbu(3) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996648/ https://www.ncbi.nlm.nih.gov/pubmed/32030314 http://dx.doi.org/10.1021/acscatal.9b04666 |
work_keys_str_mv | AT scharflennartt unravelingthehighactivityofylidefunctionalizedphosphinesinpalladiumcatalyzedaminationreactionsacomparativestudywithcyjohnphosandptbu3 AT rodsteinilja unravelingthehighactivityofylidefunctionalizedphosphinesinpalladiumcatalyzedaminationreactionsacomparativestudywithcyjohnphosandptbu3 AT schmidtmichelle unravelingthehighactivityofylidefunctionalizedphosphinesinpalladiumcatalyzedaminationreactionsacomparativestudywithcyjohnphosandptbu3 AT scherpfthorsten unravelingthehighactivityofylidefunctionalizedphosphinesinpalladiumcatalyzedaminationreactionsacomparativestudywithcyjohnphosandptbu3 AT gessnerviktoriah unravelingthehighactivityofylidefunctionalizedphosphinesinpalladiumcatalyzedaminationreactionsacomparativestudywithcyjohnphosandptbu3 |