Cargando…
Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency
AIMS: The underlying mechanisms involved in Vitamin A- (VA-) related changes in glucose metabolic disorders remain unclear. Recent evidence suggests that intestinal microbiota is closely linked to the metabolic syndrome. Here, we explored whether and how intestinal microbiota affects glucose homeost...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996671/ https://www.ncbi.nlm.nih.gov/pubmed/32064275 http://dx.doi.org/10.1155/2020/2354108 |
_version_ | 1783493550771535872 |
---|---|
author | Zhou, Yunting Zhou, Junming Zhang, Yumin Tang, Jun Sun, Bo Xu, Wei Wang, Xiaohang Chen, Yang Sun, Zilin |
author_facet | Zhou, Yunting Zhou, Junming Zhang, Yumin Tang, Jun Sun, Bo Xu, Wei Wang, Xiaohang Chen, Yang Sun, Zilin |
author_sort | Zhou, Yunting |
collection | PubMed |
description | AIMS: The underlying mechanisms involved in Vitamin A- (VA-) related changes in glucose metabolic disorders remain unclear. Recent evidence suggests that intestinal microbiota is closely linked to the metabolic syndrome. Here, we explored whether and how intestinal microbiota affects glucose homeostasis in VA-deficient diet-fed mice. METHODS: Six-week-old male C57BL/6 mice were randomly placed on either a VA-sufficient (VAS) or VA-deficient (VAD) diet for 10 weeks. Subsequently, a subclass of the VAD diet-fed mice was switched to a VA-deficient rescued (VADR) diet for an additional 8 weeks. The glucose metabolic phenotypes of the mice were assessed using glucose tolerance tests and immunohistochemistry staining. Changes in intestinal microbiota were assessed using 16S gene sequencing. The intestinal morphology, intestinal permeability, and inflammatory response activation signaling pathway were assessed using histological staining, western blots, quantitative-PCR, and enzyme-linked immunosorbent assays. RESULTS: VAD diet-fed mice displayed reduction of tissue VA levels, increased area under the curve (AUC) of glucose challenge, reduced glucose-stimulated insulin secretion, and loss of β cell mass. Redundancy analysis showed intestinal microbiota diversity was significantly associated with AUC of glucose challenge and β cell mass. Redundancy analysis showed intestinal microbiota diversity was significantly associated with AUC of glucose challenge and κB signaling pathway activation. Reintroduction of dietary VA to VAD diet-fed mice restored tissue VA levels, endocrine hormone profiles, and inflammatory response, which are similar to those observed following VAS-controlled changes in intestinal microbiota. CONCLUSIONS: We found intestinal microbiota effect islet function via controlling intestinal inflammatory phenotype in VAD diet-fed mice. Intestinal microbiota influences could be considered as an additional mechanism for the effect of endocrine function in a VAD diet-driven mouse model. |
format | Online Article Text |
id | pubmed-6996671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-69966712020-02-14 Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency Zhou, Yunting Zhou, Junming Zhang, Yumin Tang, Jun Sun, Bo Xu, Wei Wang, Xiaohang Chen, Yang Sun, Zilin J Diabetes Res Research Article AIMS: The underlying mechanisms involved in Vitamin A- (VA-) related changes in glucose metabolic disorders remain unclear. Recent evidence suggests that intestinal microbiota is closely linked to the metabolic syndrome. Here, we explored whether and how intestinal microbiota affects glucose homeostasis in VA-deficient diet-fed mice. METHODS: Six-week-old male C57BL/6 mice were randomly placed on either a VA-sufficient (VAS) or VA-deficient (VAD) diet for 10 weeks. Subsequently, a subclass of the VAD diet-fed mice was switched to a VA-deficient rescued (VADR) diet for an additional 8 weeks. The glucose metabolic phenotypes of the mice were assessed using glucose tolerance tests and immunohistochemistry staining. Changes in intestinal microbiota were assessed using 16S gene sequencing. The intestinal morphology, intestinal permeability, and inflammatory response activation signaling pathway were assessed using histological staining, western blots, quantitative-PCR, and enzyme-linked immunosorbent assays. RESULTS: VAD diet-fed mice displayed reduction of tissue VA levels, increased area under the curve (AUC) of glucose challenge, reduced glucose-stimulated insulin secretion, and loss of β cell mass. Redundancy analysis showed intestinal microbiota diversity was significantly associated with AUC of glucose challenge and β cell mass. Redundancy analysis showed intestinal microbiota diversity was significantly associated with AUC of glucose challenge and κB signaling pathway activation. Reintroduction of dietary VA to VAD diet-fed mice restored tissue VA levels, endocrine hormone profiles, and inflammatory response, which are similar to those observed following VAS-controlled changes in intestinal microbiota. CONCLUSIONS: We found intestinal microbiota effect islet function via controlling intestinal inflammatory phenotype in VAD diet-fed mice. Intestinal microbiota influences could be considered as an additional mechanism for the effect of endocrine function in a VAD diet-driven mouse model. Hindawi 2020-01-21 /pmc/articles/PMC6996671/ /pubmed/32064275 http://dx.doi.org/10.1155/2020/2354108 Text en Copyright © 2020 Yunting Zhou et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhou, Yunting Zhou, Junming Zhang, Yumin Tang, Jun Sun, Bo Xu, Wei Wang, Xiaohang Chen, Yang Sun, Zilin Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency |
title | Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency |
title_full | Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency |
title_fullStr | Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency |
title_full_unstemmed | Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency |
title_short | Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency |
title_sort | changes in intestinal microbiota are associated with islet function in a mouse model of dietary vitamin a deficiency |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996671/ https://www.ncbi.nlm.nih.gov/pubmed/32064275 http://dx.doi.org/10.1155/2020/2354108 |
work_keys_str_mv | AT zhouyunting changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT zhoujunming changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT zhangyumin changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT tangjun changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT sunbo changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT xuwei changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT wangxiaohang changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT chenyang changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency AT sunzilin changesinintestinalmicrobiotaareassociatedwithisletfunctioninamousemodelofdietaryvitaminadeficiency |