Cargando…
Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping
Random regression models (RRM) are used extensively for genomic inference and prediction of time-valued traits in animal breeding, but only recently have been used in plant systems. High-throughput phenotyping (HTP) platforms provide a powerful means to collect high-dimensional phenotypes throughout...
Autores principales: | Baba, Toshimi, Momen, Mehdi, Campbell, Malachy T., Walia, Harkamal, Morota, Gota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996807/ https://www.ncbi.nlm.nih.gov/pubmed/32012182 http://dx.doi.org/10.1371/journal.pone.0228118 |
Ejemplares similares
-
Utilizing random regression models for genomic prediction of a longitudinal trait derived from high‐throughput phenotyping
por: Campbell, Malachy, et al.
Publicado: (2018) -
Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies
por: Momen, Mehdi, et al.
Publicado: (2019) -
Predicting Longitudinal Traits Derived from High-Throughput Phenomics in Contrasting Environments Using Genomic Legendre Polynomials and B-Splines
por: Momen, Mehdi, et al.
Publicado: (2019) -
Genomic Bayesian Confirmatory Factor Analysis and Bayesian Network To Characterize a Wide Spectrum of Rice Phenotypes
por: Yu, Haipeng, et al.
Publicado: (2019) -
ShinyAIM: Shiny‐based application of interactive Manhattan plots for longitudinal genome‐wide association studies
por: Hussain, Waseem, et al.
Publicado: (2018)