Cargando…
Pre-analytical error for three point of care venous blood testing platforms in acute ambulatory settings: A mixed methods service evaluation
INTRODUCTION: Point of care blood testing to aid diagnosis is becoming increasingly common in acute ambulatory settings and enables timely investigation of a range of diagnostic markers. However, this testing allows scope for errors in the pre-analytical phase, which depends on the operator handling...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996845/ https://www.ncbi.nlm.nih.gov/pubmed/32012203 http://dx.doi.org/10.1371/journal.pone.0228687 |
Sumario: | INTRODUCTION: Point of care blood testing to aid diagnosis is becoming increasingly common in acute ambulatory settings and enables timely investigation of a range of diagnostic markers. However, this testing allows scope for errors in the pre-analytical phase, which depends on the operator handling and transferring specimens correctly. The extent and nature of these pre-analytical errors in clinical settings has not been widely reported. METHODS: We carried out a convergent parallel mixed-methods service evaluation to investigate pre-analytical errors leading to a machine error reports in a large acute hospital trust in the UK. The quantitative component comprised a retrospective analysis of all recorded error codes from Abbott Point of Care i-STAT 1, i-STAT Alinity and Abbott Rapid Diagnostics Afinion devices to summarise the error frequencies and reasons for error, focusing on those attributable to the operator. The qualitative component included a prospective ethnographic study and a secondary analysis of an existing ethnographic dataset, based in hospital-based ambulatory care and community ambulatory care respectively. RESULTS: The i-STAT had the highest usage (113,266 tests, January 2016-December 2018). As a percentage of all tests attempted, its device-recorded overall error rate was 6.8% (95% confidence interval 6.6% to 6.9%), and in the period when reliable data could be obtained, the operator-attributable error rate was 2.3% (2.2% to 2.4%). Staff identified that the most difficult step was the filling of cartridges, but that this could be improved through practice, with a perception that cartridge wastage through errors was rare. CONCLUSIONS: In the observed settings, the rate of errors attributable to operators of the primary point of care device was less than 1 in 40. In some cases, errors may lead to a small increase in resource use or time required so adequate staff training is necessary to prevent adverse impact on patient care. |
---|