Cargando…
Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis
BACKGROUND: Non‐small cell lung cancer (NSCLC) is an intractable malignant lung cancer with high rates of metastasis and mortality. Currently, long noncoding RNA nuclear RNA host gene 7 (SNHG7) is recognized as a biomarker of multiple cancers. However, the role of SNHG7 in NSCLC requires further und...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996990/ https://www.ncbi.nlm.nih.gov/pubmed/31793741 http://dx.doi.org/10.1111/1759-7714.13245 |
_version_ | 1783493605791367168 |
---|---|
author | Pang, Lingling Cheng, Yun Zou, Shenchun Song, Jie |
author_facet | Pang, Lingling Cheng, Yun Zou, Shenchun Song, Jie |
author_sort | Pang, Lingling |
collection | PubMed |
description | BACKGROUND: Non‐small cell lung cancer (NSCLC) is an intractable malignant lung cancer with high rates of metastasis and mortality. Currently, long noncoding RNA nuclear RNA host gene 7 (SNHG7) is recognized as a biomarker of multiple cancers. However, the role of SNHG7 in NSCLC requires further understanding. METHODS: The expression of SNHG7, miR‐449a and TGIF2 in NSCLC tumors and cells was examined by quantitative real time polymerase chain reaction (qRT‐PCR). Cell viability was measured by MTT assay. Cell migration and invasion was conducted using transwell assay. Protein expression of TGIF2, vimentin, N‐cadherin and E‐cadherin was detected by western blot. The interaction between miR‐449a and SNHG7 or TGIF2 was determined by luciferase reporter system, RIP and RNA pull‐down assay, respectively. Xenograft mice models were established by subcutaneously injecting A549 cells transfected with sh‐SNHG7 and sh‐control. RESULTS: SNHG7 expression was upregulated in NSCLC tumors and cells compared with normal tissues and cells. SNHG7 silencing repressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) in NSCLC. Consistently, SNHG7 knockdown hindered tumor growth in vivo. The subsequent luciferase reporter system, RIP and RNA pull‐down assay validated the interaction between miR‐449a and SNHG7 or TGIF2. The rescue experiments displayed that miR‐449a inhibitor counteracted SNHG7 silencing induced inhibition on proliferation, migration, invasion and EMT. Similarly, restoration of TGIF2 reversed miR‐449a mediated inhibition on cell progression. In addition, the results indicated that SNHG7 could regulate cell progression by targeting miR‐449a/TGIF2 axis. CONCLUSION: SNHG7 contributed to cell proliferation, migration, invasion and EMT in NSCLC by upregulating TGIF2 via sponging miR‐449a, representing a novel targeted therapy method for NSCLC. |
format | Online Article Text |
id | pubmed-6996990 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons Australia, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-69969902020-02-05 Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis Pang, Lingling Cheng, Yun Zou, Shenchun Song, Jie Thorac Cancer Original Articles BACKGROUND: Non‐small cell lung cancer (NSCLC) is an intractable malignant lung cancer with high rates of metastasis and mortality. Currently, long noncoding RNA nuclear RNA host gene 7 (SNHG7) is recognized as a biomarker of multiple cancers. However, the role of SNHG7 in NSCLC requires further understanding. METHODS: The expression of SNHG7, miR‐449a and TGIF2 in NSCLC tumors and cells was examined by quantitative real time polymerase chain reaction (qRT‐PCR). Cell viability was measured by MTT assay. Cell migration and invasion was conducted using transwell assay. Protein expression of TGIF2, vimentin, N‐cadherin and E‐cadherin was detected by western blot. The interaction between miR‐449a and SNHG7 or TGIF2 was determined by luciferase reporter system, RIP and RNA pull‐down assay, respectively. Xenograft mice models were established by subcutaneously injecting A549 cells transfected with sh‐SNHG7 and sh‐control. RESULTS: SNHG7 expression was upregulated in NSCLC tumors and cells compared with normal tissues and cells. SNHG7 silencing repressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) in NSCLC. Consistently, SNHG7 knockdown hindered tumor growth in vivo. The subsequent luciferase reporter system, RIP and RNA pull‐down assay validated the interaction between miR‐449a and SNHG7 or TGIF2. The rescue experiments displayed that miR‐449a inhibitor counteracted SNHG7 silencing induced inhibition on proliferation, migration, invasion and EMT. Similarly, restoration of TGIF2 reversed miR‐449a mediated inhibition on cell progression. In addition, the results indicated that SNHG7 could regulate cell progression by targeting miR‐449a/TGIF2 axis. CONCLUSION: SNHG7 contributed to cell proliferation, migration, invasion and EMT in NSCLC by upregulating TGIF2 via sponging miR‐449a, representing a novel targeted therapy method for NSCLC. John Wiley & Sons Australia, Ltd 2019-12-03 2020-02 /pmc/articles/PMC6996990/ /pubmed/31793741 http://dx.doi.org/10.1111/1759-7714.13245 Text en © 2019 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Pang, Lingling Cheng, Yun Zou, Shenchun Song, Jie Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis |
title | Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis |
title_full | Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis |
title_fullStr | Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis |
title_full_unstemmed | Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis |
title_short | Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating miR‐449a/TGIF2 axis |
title_sort | long noncoding rna snhg7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non‐small cell lung cancer by regulating mir‐449a/tgif2 axis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996990/ https://www.ncbi.nlm.nih.gov/pubmed/31793741 http://dx.doi.org/10.1111/1759-7714.13245 |
work_keys_str_mv | AT panglingling longnoncodingrnasnhg7contributestocellproliferationmigrationinvasionandepithelialtomesenchymaltransitioninnonsmallcelllungcancerbyregulatingmir449atgif2axis AT chengyun longnoncodingrnasnhg7contributestocellproliferationmigrationinvasionandepithelialtomesenchymaltransitioninnonsmallcelllungcancerbyregulatingmir449atgif2axis AT zoushenchun longnoncodingrnasnhg7contributestocellproliferationmigrationinvasionandepithelialtomesenchymaltransitioninnonsmallcelllungcancerbyregulatingmir449atgif2axis AT songjie longnoncodingrnasnhg7contributestocellproliferationmigrationinvasionandepithelialtomesenchymaltransitioninnonsmallcelllungcancerbyregulatingmir449atgif2axis |