Cargando…
Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor
Odorant receptors expressed at the peripheral olfactory organs are key proteins for animal volatile sensing. Although they determine the odor space of a given species, their functional characterization is a long process and remains limited. To date, machine learning virtual screening has been used t...
Autores principales: | Caballero-Vidal, Gabriela, Bouysset, Cédric, Grunig, Hubert, Fiorucci, Sébastien, Montagné, Nicolas, Golebiowski, Jérôme, Jacquin-Joly, Emmanuelle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997167/ https://www.ncbi.nlm.nih.gov/pubmed/32015393 http://dx.doi.org/10.1038/s41598-020-58564-9 |
Ejemplares similares
-
Reverse chemical ecology in a moth: machine learning on odorant receptors identifies new behaviorally active agonists
por: Caballero-Vidal, Gabriela, et al.
Publicado: (2021) -
Behavioral Effect of Plant Volatiles Binding to Spodoptera littoralis Larval Odorant Receptors
por: de Fouchier, Arthur, et al.
Publicado: (2018) -
ProLIF: a library to encode molecular interactions as fingerprints
por: Bouysset, Cédric, et al.
Publicado: (2021) -
A Comparison of the Olfactory Gene Repertoires of Adults and Larvae in the Noctuid Moth Spodoptera littoralis
por: Poivet, Erwan, et al.
Publicado: (2013) -
Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth
por: Koutroumpa, Fotini, et al.
Publicado: (2022)