Cargando…
PGsim: A Comprehensive and Highly Customizable Personal Genome Simulator
Although genome sequencing has become increasingly popular, the simulation of individual genomes is still important. This is because sequencing a large number of individual genomes is costly and genome data with extreme and boundary conditions, such as fatal genetic defects, are difficult to obtain....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997238/ https://www.ncbi.nlm.nih.gov/pubmed/32047747 http://dx.doi.org/10.3389/fbioe.2020.00028 |
Sumario: | Although genome sequencing has become increasingly popular, the simulation of individual genomes is still important. This is because sequencing a large number of individual genomes is costly and genome data with extreme and boundary conditions, such as fatal genetic defects, are difficult to obtain. Privacy and legal barriers also prevent many applications of real data. Large sequencing projects in recent years have provided a deeper understanding of the human genome. However, there is a lack of tools to leverage known data to simulate personal genomes as real as possible. Here, we designed and developed PGsim, a comprehensive and highly customizable individual genome simulator, that fully uses existing knowledge, such as variant allele frequencies in global or world main populations, mutation probability differences between protein-coding regions and non-coding regions, transition/transversion (Ti/Tv) ratios, Indel incidence, Indel length distribution, structural variation sites, and pathogenic mutation sites. Users can flexibly control the proportion and quantity of known variants, common variants, novel variants in both coding and non-coding regions, and special variants through detailed parameter settings. To ensure that the simulated personal genome has sufficient randomness, PGsim makes the generated variants more real and reliable in terms of variant distribution, proportion, and population characteristics. PGsim is able to employ a huge volume database as background data to simulate personal genomes and does not require SQL database support. Users can easily change the variant databases used as needed. As a Perl script, there is no obstacle to running PGsim on any version of the MAC OS or Linux systems, and no libraries, packages, interpreters, compilers, or other dependencies need to be installed in advance. The PGsim tool is publicly available at https://github.com/lrjuan/PGsim. |
---|