Cargando…

CuFe(2)O(4)/MoS(2) Mixed-Dimensional Heterostructures with Improved Gas Sensing Response

Mixed-dimensional (2D + nD, n = 0, 1, and 3) heterostructures opened up a new avenue for fundamental physics studies and applied nanodevice designs. Herein, a novel type-II staggered band alignment CuFe(2)O(4)/MoS(2) mixed-dimensional heterostructures (MHs) that present a distinct enhanced (20–28%)...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Kenan, Ding, Changchun, She, Yihong, Wu, Zhen, Zhao, Changhui, Pan, Baojun, Zhang, Lijie, Zhou, Wei, Fan, Qunchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997305/
https://www.ncbi.nlm.nih.gov/pubmed/32016642
http://dx.doi.org/10.1186/s11671-020-3268-4
Descripción
Sumario:Mixed-dimensional (2D + nD, n = 0, 1, and 3) heterostructures opened up a new avenue for fundamental physics studies and applied nanodevice designs. Herein, a novel type-II staggered band alignment CuFe(2)O(4)/MoS(2) mixed-dimensional heterostructures (MHs) that present a distinct enhanced (20–28%) acetone gas sensing response compared with pure CuFe(2)O(4) nanotubes are reported. Based on the structural characterizations and DFT calculation results, the tentative mechanism for the improvement of gas sensing performance of the CuFe(2)O(4)/MoS(2) MHs can be attributed to the synergic effect of type-II band alignment and the MoS(2) active sites.