Cargando…

Resistance to change: AMR gene dynamics on a commercial pig farm with high antimicrobial usage

Group antimicrobial administration is used to control disease in livestock, but we have little insight into how this impacts antimicrobial resistance (AMR) gene dynamics. Here, a longitudinal study was carried out during a single production cycle on a commercial pig unit with high historic and curre...

Descripción completa

Detalles Bibliográficos
Autores principales: Pollock, Jolinda, Muwonge, Adrian, Hutchings, Michael R., Mainda, Geoffrey, Bronsvoort, Barend M., Gally, David L., Corbishley, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997390/
https://www.ncbi.nlm.nih.gov/pubmed/32015392
http://dx.doi.org/10.1038/s41598-020-58659-3
Descripción
Sumario:Group antimicrobial administration is used to control disease in livestock, but we have little insight into how this impacts antimicrobial resistance (AMR) gene dynamics. Here, a longitudinal study was carried out during a single production cycle on a commercial pig unit with high historic and current antimicrobial usage. Quantitative PCR, 16S rRNA gene metabarcoding and shotgun metagenomic sequencing were used to track faecal AMR gene abundance and diversity and microbiome alpha diversity. Shotgun metagenomic sequencing identified 144 AMR genes in total, with higher AMR gene diversity present in young pigs compared to dry sows. Irrespective of in-feed antibiotic treatment or changes in microbiome diversity, mean AMR gene copy number was consistently high, with some AMR genes present at copy numbers comparable to the bacterial 16S rRNA gene. In conclusion, AMR gene prevalence and abundance were not influenced by antibiotic use, either during the production cycle or following whole-herd medication. The high levels of certain genes indicate they are widely disseminated throughout the microbial population, potentially aiding stability. Despite the high and relatively stable levels of resistance genes against the main antimicrobials used, these compounds continue to control production limiting diseases on this unit.