Cargando…
A Novel Approach for Drug-Target Interactions Prediction Based on Multimodal Deep Autoencoder
Drug targets are biomacromolecules or biomolecular structures that bind to specific drugs and produce therapeutic effects. Therefore, the prediction of drug-target interactions (DTIs) is important for disease therapy. Incorporating multiple similarity measures for drugs and targets is of essence for...
Autores principales: | Wang, Huiqing, Wang, Jingjing, Dong, Chunlin, Lian, Yuanyuan, Liu, Dan, Yan, Zhiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997437/ https://www.ncbi.nlm.nih.gov/pubmed/32047432 http://dx.doi.org/10.3389/fphar.2019.01592 |
Ejemplares similares
-
Drug repositioning based on heterogeneous networks and variational graph autoencoders
por: Lei, Song, et al.
Publicado: (2022) -
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023) -
Deep Multimodal Fusion Autoencoder for Saliency Prediction of RGB-D Images
por: Huang, Kengda, et al.
Publicado: (2021) -
Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
por: Shayakhmetov, Rim, et al.
Publicado: (2020) -
EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data
por: Zhang, Yuanyuan, et al.
Publicado: (2022)