Cargando…
Controlled edge dependent stacking of WS(2)-WS(2) Homo- and WS(2)-WSe(2) Hetero-structures: A Computational Study
Transition Metal Dichalcogenides (TMDs) are one of the most studied two-dimensional materials in the last 5–10 years due to their extremely interesting layer dependent properties. Despite the presence of vast research work on TMDs, the complex relation between the electro-chemical and physical prope...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997452/ https://www.ncbi.nlm.nih.gov/pubmed/32015400 http://dx.doi.org/10.1038/s41598-020-58149-6 |
Sumario: | Transition Metal Dichalcogenides (TMDs) are one of the most studied two-dimensional materials in the last 5–10 years due to their extremely interesting layer dependent properties. Despite the presence of vast research work on TMDs, the complex relation between the electro-chemical and physical properties make them the subject of further research. Our main objective is to provide a better insight into the electronic structure of TMDs. This will help us better understand the stability of the bilayer post growth homo/hetero products based on the various edge-termination, and different stacking of the two layers. In this regard, two Tungsten (W) based non-periodic chalcogenide flakes (sulfides and selenides) were considered. An in-depth analysis of their different edge termination and stacking arrangement was performed via Density Functional Theory method using VASP software. Our finding indicates the preference of chalcogenide (c-) terminated structures over the metal (m-) terminated structures for both homo and heterobilayers, and thus strongly suggests the nonexistence of the m-terminated TMDs bilayer products. |
---|