Cargando…
Sleep Stage Classification Using Time-Frequency Spectra From Consecutive Multi-Time Points
Sleep stage classification is an open challenge in the field of sleep research. Considering the relatively small size of datasets used by previous studies, in this paper we used the Sleep Heart Health Study dataset from the National Sleep Research Resource database. A long short-term memory (LSTM) n...
Autores principales: | Xu, Ziliang, Yang, Xuejuan, Sun, Jinbo, Liu, Peng, Qin, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997491/ https://www.ncbi.nlm.nih.gov/pubmed/32047422 http://dx.doi.org/10.3389/fnins.2020.00014 |
Ejemplares similares
-
Abnormal Resting-State Functional Connectivity in the Whole Brain in Lifelong Premature Ejaculation Patients Based on Machine Learning Approach
por: Xu, Ziliang, et al.
Publicado: (2019) -
Prediction of the Effect of Sleep Deprivation on Response Inhibition via Machine Learning on Structural Magnetic Resonance Imaging Data
por: Zhao, Rui, et al.
Publicado: (2018) -
Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
por: Bresch, Erik, et al.
Publicado: (2018) -
Combining time-frequency and spatial information for the detection of sleep spindles
por: O'Reilly, Christian, et al.
Publicado: (2015) -
Theta-Frequency Resonance at the Cerebellum Input Stage Improves Spike Timing on the Millisecond Time-Scale
por: Gandolfi, Daniela, et al.
Publicado: (2013)