Cargando…
In vivo subdiffuse scanning laser oximetry of the human retina
Scanning laser ophthalmoscopes (SLOs) have the potential to perform high speed, high contrast, functional imaging of the human retina for diagnosis and follow-up of retinal diseases. Commercial SLOs typically use a monochromatic laser source or a superluminescent diode for imaging. Multispectral SLO...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997660/ https://www.ncbi.nlm.nih.gov/pubmed/31571433 http://dx.doi.org/10.1117/1.JBO.24.9.096009 |
_version_ | 1783493741905969152 |
---|---|
author | Damodaran, Mathi Amelink, Arjen Feroldi, Fabio Lochocki, Benjamin Davidoiu, Valentina de Boer, Johannes F. |
author_facet | Damodaran, Mathi Amelink, Arjen Feroldi, Fabio Lochocki, Benjamin Davidoiu, Valentina de Boer, Johannes F. |
author_sort | Damodaran, Mathi |
collection | PubMed |
description | Scanning laser ophthalmoscopes (SLOs) have the potential to perform high speed, high contrast, functional imaging of the human retina for diagnosis and follow-up of retinal diseases. Commercial SLOs typically use a monochromatic laser source or a superluminescent diode for imaging. Multispectral SLOs using an array of laser sources for spectral imaging have been demonstrated in research settings, with applications mainly aiming at retinal oxygenation measurements. Previous SLO-based oximetry techniques are predominantly based on wavelengths that depend on laser source availability. We describe an SLO system based on a supercontinuum (SC) source and a double-clad fiber using the single-mode core for illumination and the larger inner cladding for quasi-confocal detection to increase throughput and signal-to-noise ratio. A balanced detection scheme was implemented to suppress the relative intensity noise of the SC source. The SLO produced dual wavelength, high-quality images at [Formula: see text] with a maximum 20 deg imaging field-of-view with any desired combination of wavelengths in the visible spectrum. We demonstrate SLO-based dual-wavelength oximetry in vessels down to [Formula: see text] in diameter. Reproducibility was demonstrated by performing three different imaging sessions of the same volunteer, 8 min apart. Finally, by performing a wavelength sweep between 485 and 608 nm, we determined, for our SLO geometry, an approximately linear relationship between the effective path length of photons through the blood vessels and the vessel diameter. |
format | Online Article Text |
id | pubmed-6997660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Society of Photo-Optical Instrumentation Engineers |
record_format | MEDLINE/PubMed |
spelling | pubmed-69976602020-02-10 In vivo subdiffuse scanning laser oximetry of the human retina Damodaran, Mathi Amelink, Arjen Feroldi, Fabio Lochocki, Benjamin Davidoiu, Valentina de Boer, Johannes F. J Biomed Opt Imaging Scanning laser ophthalmoscopes (SLOs) have the potential to perform high speed, high contrast, functional imaging of the human retina for diagnosis and follow-up of retinal diseases. Commercial SLOs typically use a monochromatic laser source or a superluminescent diode for imaging. Multispectral SLOs using an array of laser sources for spectral imaging have been demonstrated in research settings, with applications mainly aiming at retinal oxygenation measurements. Previous SLO-based oximetry techniques are predominantly based on wavelengths that depend on laser source availability. We describe an SLO system based on a supercontinuum (SC) source and a double-clad fiber using the single-mode core for illumination and the larger inner cladding for quasi-confocal detection to increase throughput and signal-to-noise ratio. A balanced detection scheme was implemented to suppress the relative intensity noise of the SC source. The SLO produced dual wavelength, high-quality images at [Formula: see text] with a maximum 20 deg imaging field-of-view with any desired combination of wavelengths in the visible spectrum. We demonstrate SLO-based dual-wavelength oximetry in vessels down to [Formula: see text] in diameter. Reproducibility was demonstrated by performing three different imaging sessions of the same volunteer, 8 min apart. Finally, by performing a wavelength sweep between 485 and 608 nm, we determined, for our SLO geometry, an approximately linear relationship between the effective path length of photons through the blood vessels and the vessel diameter. Society of Photo-Optical Instrumentation Engineers 2019-09-30 2019-09 /pmc/articles/PMC6997660/ /pubmed/31571433 http://dx.doi.org/10.1117/1.JBO.24.9.096009 Text en © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
spellingShingle | Imaging Damodaran, Mathi Amelink, Arjen Feroldi, Fabio Lochocki, Benjamin Davidoiu, Valentina de Boer, Johannes F. In vivo subdiffuse scanning laser oximetry of the human retina |
title | In vivo subdiffuse scanning laser oximetry of the human retina |
title_full | In vivo subdiffuse scanning laser oximetry of the human retina |
title_fullStr | In vivo subdiffuse scanning laser oximetry of the human retina |
title_full_unstemmed | In vivo subdiffuse scanning laser oximetry of the human retina |
title_short | In vivo subdiffuse scanning laser oximetry of the human retina |
title_sort | in vivo subdiffuse scanning laser oximetry of the human retina |
topic | Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997660/ https://www.ncbi.nlm.nih.gov/pubmed/31571433 http://dx.doi.org/10.1117/1.JBO.24.9.096009 |
work_keys_str_mv | AT damodaranmathi invivosubdiffusescanninglaseroximetryofthehumanretina AT amelinkarjen invivosubdiffusescanninglaseroximetryofthehumanretina AT feroldifabio invivosubdiffusescanninglaseroximetryofthehumanretina AT lochockibenjamin invivosubdiffusescanninglaseroximetryofthehumanretina AT davidoiuvalentina invivosubdiffusescanninglaseroximetryofthehumanretina AT deboerjohannesf invivosubdiffusescanninglaseroximetryofthehumanretina |