Cargando…
Biological monitoring of occupational exposure to dichloromethane by means of urinalysis for un-metabolized dichloromethane
The objective of the study is to establish exposure-excretion relationship between dichlorometane (DCM) in air (DCM-A) and in urine (DCM-U) in workplace to confirm a previous report. Male workers in a screen-printing plant participated in the study. Time-weighted average DCM-A was measured by diffus...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Occupational Safety and Health, Japan
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997715/ https://www.ncbi.nlm.nih.gov/pubmed/30996213 http://dx.doi.org/10.2486/indhealth.2018-0222 |
Sumario: | The objective of the study is to establish exposure-excretion relationship between dichlorometane (DCM) in air (DCM-A) and in urine (DCM-U) in workplace to confirm a previous report. Male workers in a screen-printing plant participated in the study. Time-weighted average DCM-A was measured by diffusive sampling followed by gas-chromatography (GC), and DCM in end-of-shift urine samples was by head-space GC. The data were subjected to regression and other statistical analyses. In practice, 30 sets of DCM-A and DCM-U values were available. The geometric mean DCM-A was 8.4 ppm and that of DCM-U (as observed) was 41.1 µg/l. The correlation coefficients (0.70–0.85) were statistically significant across the correction for urine density. Thus, the analysis for un-metabolized DCM in end-of-shift urine samples is applicable for biological monitoring of occupational exposure to DCM, in support of and in agreement with the previous report. In conclusion, biological monitoring of occupational DCM exposure is possible by use of analysis for un-metabolized DCM in end-of-shift urine. |
---|