Cargando…
Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
BACKGROUND: Cardiovascular diseases kill approximately 17 million people globally every year, and they mainly exhibit as myocardial infarctions and heart failures. Heart failure (HF) occurs when the heart cannot pump enough blood to meet the needs of the body.Available electronic medical records of...
Autores principales: | Chicco, Davide, Jurman, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998201/ https://www.ncbi.nlm.nih.gov/pubmed/32013925 http://dx.doi.org/10.1186/s12911-020-1023-5 |
Ejemplares similares
-
Survival prediction of patients with sepsis from age, sex, and septic episode number alone
por: Chicco, Davide, et al.
Publicado: (2020) -
The ABC recommendations for validation of supervised machine learning results in biomedical sciences
por: Chicco, Davide, et al.
Publicado: (2022) -
Towards a potential pan-cancer prognostic signature for gene expression based on probesets and ensemble machine learning
por: Chicco, Davide, et al.
Publicado: (2022) -
Machine learning models in heart failure with mildly reduced ejection fraction patients
por: Zhao, Hengli, et al.
Publicado: (2022) -
Heart failure with preserved ejection fraction phenogroup classification using machine learning
por: Kyodo, Atsushi, et al.
Publicado: (2023)