Cargando…
CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging
BACKGROUND: Cox proportional hazard model (CPH) is commonly used in clinical research for survival analysis. In quantitative medical imaging (radiomics) studies, CPH plays an important role in feature reduction and modeling. However, the underlying linear assumption of CPH model limits the prognosti...
Autores principales: | Zhang, Yucheng, Lobo-Mueller, Edrise M., Karanicolas, Paul, Gallinger, Steven, Haider, Masoom A., Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998249/ https://www.ncbi.nlm.nih.gov/pubmed/32013871 http://dx.doi.org/10.1186/s12880-020-0418-1 |
Ejemplares similares
-
Prognostic Value of Transfer Learning Based Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Zhang, Yucheng, et al.
Publicado: (2020) -
Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images
por: Zhang, Yucheng, et al.
Publicado: (2021) -
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Khalvati, Farzad, et al.
Publicado: (2019) -
CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma – a quantitative analysis
por: Eilaghi, Armin, et al.
Publicado: (2017) -
Advances in the management of pancreatic ductal adenocarcinoma
por: O’Kane, Grainne M., et al.
Publicado: (2021)