Cargando…
Deep learning can be used to train naïve, nonprofessional observers to detect diagnostic visual patterns of certain cancers in mammograms: a proof-of-principle study
The scientific, clinical, and pedagogical significance of devising methodologies to train nonprofessional subjects to recognize diagnostic visual patterns in medical images has been broadly recognized. However, systematic approaches to doing so remain poorly established. Using mammography as an exem...
Autor principal: | Hegdé, Jay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998757/ https://www.ncbi.nlm.nih.gov/pubmed/32042860 http://dx.doi.org/10.1117/1.JMI.7.2.022410 |
Ejemplares similares
-
Visual hindsight bias for abnormal mammograms in radiologists
por: Schill, Hayden M., et al.
Publicado: (2023) -
Modeling sequential context effects in diagnostic interpretation of screening mammograms
por: Alamudun, Folami, et al.
Publicado: (2018) -
Assessing satisfaction of search in virtual mammograms for experienced and novice searchers
por: Adamo, Stephen H., et al.
Publicado: (2023) -
Influence of radiology expertise on the perception of nonmedical images
por: Kelly, Brendan, et al.
Publicado: (2017) -
Estimability index for volume quantification of homogeneous spherical lesions in computed tomography
por: Samei, Ehsan, et al.
Publicado: (2017)