Cargando…

High-throughput sequencing of virus-infected Cucurbita pepo samples revealed the presence of Zucchini shoestring virus in Zimbabwe

OBJECTIVES: Plant-infecting viruses remain a serious challenge towards achieving food security worldwide. Cucurbit virus surveys were conducted in Zimbabwe during the 2014 and 2015 growing seasons. Leaf samples displaying virus-like symptoms were collected and stored until analysis. Three baby marro...

Descripción completa

Detalles Bibliográficos
Autores principales: Karavina, Charles, Ibaba, Jacques Davy, Gubba, Augustine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998830/
https://www.ncbi.nlm.nih.gov/pubmed/32014054
http://dx.doi.org/10.1186/s13104-020-4927-3
Descripción
Sumario:OBJECTIVES: Plant-infecting viruses remain a serious challenge towards achieving food security worldwide. Cucurbit virus surveys were conducted in Zimbabwe during the 2014 and 2015 growing seasons. Leaf samples displaying virus-like symptoms were collected and stored until analysis. Three baby marrow samples were subjected to next-generation sequencing and the data generated were analysed using genomics technologies. Zucchini shoestring virus (ZSSV), a cucurbit-infecting potyvirus previously described in South Africa was one of the viruses identified. The genomes of the three ZSSV isolates are described analysed in this note. RESULTS: The three ZSSV isolates had the same genome size of 10,297 bp excluding the polyA tail with a 43% GC content. The large open reading frame was found at positions 69 to 10,106 on the genome and encodes a 3345 amino acids long polyprotein which had the same cleavage site sequences as those described on the South African isolate except for the P1-pro site. Genome sequence comparisons of all the ZSSV isolates showed that the isolates F7-Art and S6-Prime had identical sequence across the entire genome while sharing 99.06% and 99.34% polyprotein nucleotide and amino acid sequence identities, respectively with the isolate S7-Prime.