Cargando…
Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks
Stochastic gradient descent requires that training samples be drawn from a uniformly random distribution of the data. For a deployed system that must learn online from an uncontrolled and unknown environment, the ordering of input samples often fails to meet this criterion, making lifelong learning...
Autores principales: | Allred, Jason M., Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999159/ https://www.ncbi.nlm.nih.gov/pubmed/32063827 http://dx.doi.org/10.3389/fnins.2020.00007 |
Ejemplares similares
-
Information-Theoretic Intrinsic Plasticity for Online Unsupervised Learning in Spiking Neural Networks
por: Zhang, Wenrui, et al.
Publicado: (2019) -
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014) -
Unsupervised learning of digit recognition using spike-timing-dependent plasticity
por: Diehl, Peter U., et al.
Publicado: (2015) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021)