Cargando…
The effect of alcohol on ionizing and non-ionizing drug release from hydrophilic, lipophilic and dual matrix tablets
The aim of this work was to investigate and quantitatively evaluate the effect of presence of alcohol on in vitro release of ionizing and non-ionizing drug from hydrophilic, lipophilic and hydrophilic-lipophilic matrix tablets. The Food and Drug Administration (FDA) recommends in vitro dissolution t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000342/ https://www.ncbi.nlm.nih.gov/pubmed/32042257 http://dx.doi.org/10.1016/j.jsps.2019.11.020 |
Sumario: | The aim of this work was to investigate and quantitatively evaluate the effect of presence of alcohol on in vitro release of ionizing and non-ionizing drug from hydrophilic, lipophilic and hydrophilic-lipophilic matrix tablets. The Food and Drug Administration (FDA) recommends in vitro dissolution testing of extended release formulations in ethanolic media up to 40% because of possible alcohol-induced dose dumping effect. This study is focused on comparison of the dissolution behavior of matrix tablets (based on hypromellose and/or glyceryl behenate as retarding agent) of the same composition containing different type of drug – ionizing tramadol hydrochloride (TH) and non-ionizing pentoxifylline (PTX). The dissolution tests were performed in acidic medium (pH 1.2) and in alcoholic medim (20%, 40% of ethanol) and the changes of tablets were observed also photographically. It was found that the alcohol resistence of the hydrophilic-lipophilic formulations with TH and the hydrophilic-lipophilic formulations with PTX containing a higher amount of hypromellose does not reflect the alcohol resistence of the formulations with pure hypromellose or glyceryl behenate. Both hydrophilic-lipophilic formulation with TH and more lipophilic formulation with PTX show significant alcohol dose dumping effect. |
---|