Cargando…
Immune biological rationales for the design of combined radio- and immunotherapies
Cancer immunotherapies are promising treatments for many forms of cancer. Nevertheless, the response rates to, e.g., immune checkpoint inhibitors (ICI), are still in low double-digit percentage. This calls for further therapy optimization that should take into account combination of immunotherapies...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000501/ https://www.ncbi.nlm.nih.gov/pubmed/31953578 http://dx.doi.org/10.1007/s00262-019-02460-3 |
Sumario: | Cancer immunotherapies are promising treatments for many forms of cancer. Nevertheless, the response rates to, e.g., immune checkpoint inhibitors (ICI), are still in low double-digit percentage. This calls for further therapy optimization that should take into account combination of immunotherapies with classical tumor therapies such as radiotherapy. By designing multimodal approaches, immune modulatory properties of certain radiation schemes, additional immune modulation by immunotherapy with ICI and hyperthermia, as well as patient stratification based on genetic and immune constitutions have to be considered. In this context, both the tumor and its microenvironment including cells of the innate and adaptive immune system have to be viewed in synopsis. Knowledge of immune activation and immune suppression by radiation is the basis for well-elaborated addition of certain immunotherapies. In this review, the focus is set on additional immune stimulation by hyperthermia and restoration of an immune response by ICI. The impact of radiation dose and fractionation on immune modulation in multimodal settings has to be considered, as the dynamics of the immune response and the timing between radiotherapy and immunotherapy. Another big challenge is the patient stratification that should be based on matrices of biomarkers, taking into account genetics, proteomics, radiomics, and “immunomics”. One key aim is to turn immunological “cold” tumors into “hot” tumors, and to eliminate barriers of immune-suppressed or immune-excluded tumors. Comprehensive knowledge of immune alterations induced by radiation and immunotherapy when being applied together should be utilized for patient-adapted treatment planning and testing of innovative tumor therapies within clinical trials. |
---|